Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Length-biased failure time data occur often in various biomedical fields, including clinical trials, epidemiological cohort studies and genome-wide association studies, and their analyses have been attracting a surge of interest. In practical applications, because one may collect a large number of candidate covariates for the failure event of interest, variable selection becomes a useful tool to identify the important risk factors and enhance the estimation accuracy. In this paper, we consider Cox’s proportional hazards model and develop a penalized variable selection technique with various popular penalty functions for length-biased data, in which the failure event of interest suffers from interval censoring. Specifically, a computationally stable and reliable penalized expectation-maximization algorithm via two-stage data augmentation is developed to overcome the challenge in maximizing the intractable penalized likelihood. We establish the oracle property of the proposed method and present some simulation results, suggesting that the proposed method outperforms the traditional variable selection method based on the conditional likelihood. The proposed method is then applied to a set of real data arising from the Prostate, Lung, Colorectal and Ovarian cancer screening trial. The analysis results show that African Americans and having immediate family members with prostate cancer significantly increase the risk of developing prostate cancer, while having diabetes exhibited a significantly lower risk of developing prostate cancer.

Details

Title
Variable Selection for Length-Biased and Interval-Censored Failure Time Data
Author
Fan, Feng 1 ; Cheng, Guanghui 2 ; Sun, Jianguo 3 

 School of Mathematics, Jilin University, Changchun 130012, China; [email protected] 
 Guangzhou Institute of International Finance, Guangzhou University, Guangzhou 510006, China 
 Department of Statistics, University of Missouri, Columbia, MO 65211, USA; [email protected] 
First page
4576
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
22277390
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2893161048
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.