Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Microfluidic devices with a free-standing structure were printed directly on polymer films using the functional materials that form interconnected pores. The printed devices can transport fluids by capillary action in the same fashion as paper-based microfluidic devices, and they can handle much smaller sample volumes than typical paper-based devices. Detection of glucose was performed using both colorimetric and electrochemical methods, and the observed limits of detection (LOD) were similar to those obtained with paper-based microfluidic devices under comparable testing conditions. It is demonstrated that printed microfluidic devices can be fabricated using printing processes that are suitable for high-volume and low-cost production and that the integration of microfluidic channels with electrodes is straightforward with printing. Several materials that are printable and form interconnected pores are presented.

Details

Title
Printed Capillary Microfluidic Devices and Their Application in Biosensing
Author
Zhang, Zhiyi; Lang, Stephen; Pearson, Kate; Yawar Farhan; Ye Tao; Xiao, Gaozhi
First page
2059
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
2072666X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2893177211
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.