Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Environmental noise pollution is a growing challenge worldwide, necessitating effective sound absorption strategies to improve acoustic environments. Materials that draw inspiration from nature’s structural design principles can provide enhanced functionalities. Wood exhibits an intricate multi-scale porous architecture that can dissipate acoustic energy. This study investigates a biomimetic sound-absorbing structure composed of hierarchical pores inspired by the vascular networks within wood cells. The perforated resonators induce complementary frequency responses and porous propagation effects for broadband attenuation. Samples were fabricated using 3D printing for systematic testing. The pore size, porosity, number of layers, and order of the layers were controlled as experimental variables. Acoustic impedance tube characterization demonstrated that optimizing these architectural parameters enables absorption coefficients approaching unity across a broad frequency range. The tuned multi-layer porous architectures outperformed single pore baselines, achieving up to a 25–35% increase in the average absorption. The bio-inspired coupled pore designs also exhibited a 95% broader working bandwidth. These enhancements result from the increased viscous losses and tailored impedance matching generated by the hierarchical porosity. This work elucidates structure–property guidelines for designing biomimetic acoustic metamaterials derived from the porous morphology of wood. The results show significant promise for leveraging such multi-scale cellular geometries in future materials and devices for noise control and dissipative engineering applications across diverse sectors.

Details

Title
Biomimetic Coupling Structure Increases the Noise Friction and Sound Absorption Effect
Author
Ma, Yunhai 1 ; Ye, Wei 2 

 College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China; [email protected]; Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China; Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China 
 College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China; [email protected]; Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China 
First page
7148
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2893183715
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.