Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In recent years, underwater acoustic applications have attracted much attention, for example, for underwater environmental monitoring, underwater exploration, etc. Hydrophones play a particularly important role. Although hydrophone design has been in multifarious application forms, it still needs to consider increasing demand for low-cost, low-consumption, and multiple-function devices, as well as issues around miniaturization, lossless data collection, etc. In this paper, we design a compact underwater acoustic device that has the capability of underwater acoustic signal storage, underwater acoustic signal transmission via the Internet, and decoding based on the direct sequences spread spectrum (DSSS). The key problem is how to implement multiple functions in only one micro-controller unit (MCU). The hardware and software of the proposed multi-function hydrophone are described in detail. In particular, the MCU, the pre-amplifier with gain control, and the analog-to-digital integrated chip are introduced. Moreover, underwater acoustic data storage, underwater acoustic transmission, and the DSSS receiver are depicted in terms of software. The different functions of the hydrophone are verified in sea trial experiments. The results show that the proposed multi-function hydrophone is able to sample underwater acoustic data at high quality. In addition, to demonstrate configurable parameters, the DSSS receiver with different carrier frequencies is provided. The proposed multi-function hydrophone realizes zero bit error rate (BER) when carrier frequency fc=9 kHz, and the BER with 103 order of magnitude when carrier frequency fc=15.5 kHz. The results show that the proposed multi-function hydrophone has great potential to explore the ocean.

Details

Title
Design and Implementation of a Multi-Function Hydrophone for Underwater Acoustic Application
Author
Wang, Rong 1 ; Zhou, Yuehai 1   VIAFID ORCID Logo  ; Yang, Xiaoyu 1   VIAFID ORCID Logo  ; Tong, Feng 1   VIAFID ORCID Logo  ; Wu, Jianming 1 

 College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; [email protected] (R.W.); [email protected] (X.Y.); [email protected] (F.T.); [email protected] (J.W.); The National and Local Joint Engineering Research Center for Navigation and Location Service Technology, Xiamen University, Xiamen 361102, China 
First page
2203
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20771312
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2893299421
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.