Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this paper, we address the problem of covariance matrix estimation for radar adaptive detection under non-Gaussian clutter. Traditional model-based estimators may suffer from performance loss due to the mismatch between real data and assumed models. Therefore, we resort to a data-driven deep-learning method and propose a covariance matrix estimation method based on a complex-valued convolutional neural network (CV-CNN). Moreover, a real-valued (RV) network with the same framework as the proposed CV network is also constructed to serve as a natural competitor. The obtained clutter covariance matrix estimation based on the network is applied to the adaptive normalized matched filter (ANMF) detector for performance assessment. The detection results via both simulated and real sea clutter illustrate that the estimator based on CV-CNN outperforms other traditional model-based estimators as well as its RV competitor in terms of probability of detection (PD).

Details

Title
Clutter Covariance Matrix Estimation for Radar Adaptive Detection Based on a Complex-Valued Convolutional Neural Network
Author
Kang, Naixin 1 ; Shang, Zheran 2   VIAFID ORCID Logo  ; Liu, Weijian 3   VIAFID ORCID Logo  ; Huang, Xiaotao 1 

 College of Electronic Science, National University of Defense Technology, Changsha 410073, China; [email protected] (N.K.); [email protected] (X.H.) 
 Academy of Military Sciences, Beijing 100000, China 
 Wuhan Electronic Information Institute, Wuhan 430019, China; [email protected] 
First page
5367
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2893344659
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.