Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

LiDAR odometry is a fundamental task for high-precision map construction and real-time and accurate localization in autonomous driving. However, point clouds in urban road scenes acquired by vehicle-borne lasers are of large amounts, “near dense and far sparse” density, and contain different dynamic objects, leading to low efficiency and low accuracy of existing LiDAR odometry methods. To address the above issues, a simulation-based self-supervised line extraction in urban road scene is proposed, as a pre-processing for LiDAR odometry to reduce the amount of input and the interference from dynamic objects. A simulated dataset is first constructed according to the characteristics of point clouds in urban road scenes; and then, an EdgeConv-based network, named LO-LineNet, is used for pre-training; finally, a model transferring strategy is adopted to transfer the pre-trained model from a simulated dataset to real-world scenes without ground-truth labels. Experimental results on the KITTI Odometry Dataset and the Apollo SouthBay Dataset indicate that the proposed method can accurately extract reliable lines in urban road scenes in a self-supervised way, and the use of the extracted reliable lines as input for odometry can significantly improve its accuracy and efficiency in urban road scenes.

Details

Title
Simulation-Based Self-Supervised Line Extraction for LiDAR Odometry in Urban Road Scenes
Author
Wang, Peng 1 ; Zhou, Ruqin 1   VIAFID ORCID Logo  ; Dai, Chenguang 1 ; Wang, Hanyun 1   VIAFID ORCID Logo  ; Jiang, Wanshou 2   VIAFID ORCID Logo  ; Zhang, Yongsheng 1 

 School of Surveying and Mapping, Information Engineering University, Zhengzhou 450001, China 
 State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China 
First page
5322
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2893344769
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.