Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

With the rise in traffic congestion in urban centers, predicting accidents has become paramount for city planning and public safety. This work comprehensively studied the efficacy of modern deep learning (DL) methods in forecasting traffic accidents and enhancing Level-4 and Level-5 (L-4 and L-5) driving assistants with actionable visual and language cues. Using a rich dataset detailing accident occurrences, we juxtaposed the Transformer model against traditional time series models like ARIMA and the more recent Prophet model. Additionally, through detailed analysis, we delved deep into feature importance using principal component analysis (PCA) loadings, uncovering key factors contributing to accidents. We introduce the idea of using real-time interventions with large language models (LLMs) in autonomous driving with the use of lightweight compact LLMs like LLaMA-2 and Zephyr-7b-α. Our exploration extends to the realm of multimodality, through the use of Large Language-and-Vision Assistant (LLaVA)—a bridge between visual and linguistic cues by means of a Visual Language Model (VLM)—in conjunction with deep probabilistic reasoning, enhancing the real-time responsiveness of autonomous driving systems. In this study, we elucidate the advantages of employing large multimodal models within DL and deep probabilistic programming for enhancing the performance and usability of time series forecasting and feature weight importance, particularly in a self-driving scenario. This work paves the way for safer, smarter cities, underpinned by data-driven decision making.

Details

Title
LLM Multimodal Traffic Accident Forecasting
Author
de Zarzà, I 1   VIAFID ORCID Logo  ; de Curtò, J 1   VIAFID ORCID Logo  ; Roig, Gemma 2   VIAFID ORCID Logo  ; Calafate, Carlos T 3   VIAFID ORCID Logo 

 Informatik und Mathematik, GOETHE-University Frankfurt am Main, 60323 Frankfurt am Main, Germany; [email protected] (I.d.Z.); [email protected] (G.R.); Departamento de Informática de Sistemas y Computadores, Universitat Politècnica de València, 46022 València, Spain; [email protected]; Estudis d’Informàtica, Multimèdia i Telecomunicació, Universitat Oberta de Catalunya, 08018 Barcelona, Spain 
 Informatik und Mathematik, GOETHE-University Frankfurt am Main, 60323 Frankfurt am Main, Germany; [email protected] (I.d.Z.); [email protected] (G.R.); HESSIAN Center for AI (hessian.AI), 64289 Darmstadt, Germany 
 Departamento de Informática de Sistemas y Computadores, Universitat Politècnica de València, 46022 València, Spain; [email protected] 
First page
9225
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2893352802
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.