It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Text representations learned by machine learning models often encode undesirable demographic information of the user. Predictive models based on these representations can rely on such information, resulting in biased decisions. We present a novel debiasing technique, Fairness-aware Rate Maximization (FaRM), that removes protected information by making representations of instances belonging to the same protected attribute class uncorrelated, using the rate-distortion function. FaRM is able to debias representations with or without a target task at hand. FaRM can also be adapted to remove information about multiple protected attributes simultaneously. Empirical evaluations show that FaRM achieves state-of-the-art performance on several datasets, and learned representations leak significantly less protected attribute information against an attack by a non-linear probing network.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer