It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Aims
Left ventricular remodelling subsequent to myocardial infarction (MI) constitutes a pivotal underlying cause of heart failure. Intervention with the nontoxic endogenous aryl hydrocarbon receptor (AHR) agonist 2‐(1′H‐indole‐3′‐carbonyl)‐thiazole‐4‐carboxylic acid methyl ester (ITE) in the acute phase of MI has been shown to ameliorate cardiac function, but its role in the chronic phase remains obscured. This study explores the beneficial role of ITE in delaying the progression of heart failure in the chronic phase of MI.
Methods and results
MI rats established by ligating the left anterior descending coronary artery were treated with the indicated concentration of the AHR agonist ITE or vehicle alone. Echocardiography was performed to determine cardiac structure and function; myocardial morphology and fibrosis were observed by haematoxylin and eosin and Masson's trichrome staining; serum biochemical indices, BNP, and inflammatory cytokine levels were detected by enzyme‐linked immunosorbent assay; F4/80+iNOS+M1 macrophages and F4/80+CD206+M2 macrophages were detected by immunofluorescence; the terminal deoxynucleotidyl transferase‐mediated dUTP nick end labelling assay was used to detect the apoptosis of cardiomyocytes; ultrastructural changes in myocardial tissue were observed by transmission electron microscopy; and Cyp1a1, Akt, P‐Akt, p70S6K, P‐p70S6K, Bcl‐2, Bax, caspase‐3, and cleaved caspase‐3 protein levels were determined via Western blotting. We found that therapy with the AHR agonist ITE rescued cardiac remodelling and dysfunction in rats with MI and attenuated myocardial fibrosis, inflammation, and mitochondrial damage. Further studies confirmed that ITE dose‐dependently improved myocardial cell apoptosis after MI, as demonstrated by reduced levels of the apoptosis‐related proteins cleaved caspase‐3 and Bax but increased expression levels of Bcl‐2. These effects were attributed to ITE‐induced activation of AHR receptors, leading to the down‐regulation of Akt and p70S6K phosphorylation.
Conclusions
The AHR agonist ITE alleviates cardiomyocyte apoptosis through the Akt/p70S6K signalling pathway, thereby rescuing left ventricular adverse remodelling and cardiac dysfunction after MI.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Echocardiology, Fujian Institute of Hypertension, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China, Department of Echocardiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
2 Cardiovascular Department, Fujian Institute of Hypertension, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China, Cardiovascular Department, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China





