Full text

Turn on search term navigation

© 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Movement behavior is central to understanding species distributions, population dynamics and coexistence with other species. Although the relationship between conspecific density and emigration has been well studied, little attention has been paid to how interspecific competitor density affects another species' movement behavior. We conducted releases of two species of competing Tribolium flour beetles at different densities, alone and together in homogeneous microcosms, and tested whether their recaptures-with-distance were well described by a random-diffusion model. We also determined whether mean displacement distances varied with the release density of conspecific and heterospecific beetles. A diffusion model provided a good fit to the redistribution of T. castaneum and T. confusum at all release densities, explaining an average of >60% of the variation in recaptures. For both species, mean displacement (directly proportional to the diffusion rate) exhibited a humped-shaped relationship with conspecific density. Finally, we found that both species of beetle impacted the within-patch movement rates of the other species, but the effect depended on density. For T. castaneum in the highest density treatment, the addition of equal numbers of T. castaneum or T. confusum had the same effect, with mean displacements reduced by approximately one half. The same result occurred for T. confusum released at an intermediate density. In both cases, it was total beetle abundance, not species identity that mattered to mean displacement. We suggest that displacement or diffusion rates that exhibit a nonlinear relationship with density or depend on the presence or abundance of interacting species should be considered when attempting to predict the spatial spread of populations or scaling up to heterogeneous landscapes.

Details

Title
Density-dependent within-patch movement behavior of two competing species
Author
Cronin, James T 1   VIAFID ORCID Logo  ; Goddard, Jerome, II 2 ; Krivchenia, Aaron 1 ; Ratnasingham Shivaji 3 

 Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA 
 Department of Mathematics and Computer Science, Auburn University Montgomery, Montgomery, Alabama, USA 
 Department of Mathematics and Statistics, University of North Carolina Greensboro, Greensboro, North Carolina, USA 
Section
RESEARCH ARTICLES
Publication year
2023
Publication date
Nov 2023
Publisher
John Wiley & Sons, Inc.
e-ISSN
20457758
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2894583643
Copyright
© 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.