Content area

Abstract

Many social scientists study the career trajectories of populations of interest, such as economic and administrative elites. However, data to document such processes are rarely completely available, which motivates the adoption of inference tools that can account for large numbers of missing values. Taking the example of public-private paths of elite civil servants in France, we introduce binary Markov switching models to perform Bayesian data augmentation. Our procedure relies on two data sources: (1) detailed observations of a small number of individual trajectories, and (2) less informative ``traces'' left by all individuals, which we model for imputation of missing data. An advantage of this model class is that it maintains the properties of hidden Markov models and enables a tailored sampler to target the posterior, while allowing for varying parameters across individuals and time. We provide two applied studies which demonstrate this can be used to properly test substantive hypotheses, and expand the social scientific literature in various ways. We notably show that the rate at which ENA graduates exit the French public sector has not increased since 1990, but that the rate at which they come back has increased.

Details

1009240
Identifier / keyword
Title
Career Modeling with Missing Data and Traces
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Dec 2, 2024
Section
Statistics
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-12-03
Milestone dates
2023-11-26 (Submission v1); 2024-12-02 (Submission v2)
Publication history
 
 
   First posting date
03 Dec 2024
ProQuest document ID
2894587791
Document URL
https://www.proquest.com/working-papers/career-modeling-with-missing-data-traces/docview/2894587791/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-12-04
Database
2 databases
  • ProQuest One Academic
  • ProQuest One Academic