Content area

Abstract

Video Internet of Things (VIoT) has shown full potential in collecting an unprecedented volume of video data. How to schedule the domain-specific perceiving models and analyze the collected videos uniformly, efficiently, and especially intelligently to accomplish complicated tasks is challenging. To address the challenge, we build VIoTGPT, the framework based on LLMs to correctly interact with humans, query knowledge videos, and invoke vision models to analyze multimedia data collaboratively. To support VIoTGPT and related future works, we meticulously crafted the VIoT-Tool dataset, including the training dataset and the benchmark involving 11 representative vision models across three categories based on semi-automatic annotations. To guide LLM to act as the intelligent agent towards intelligent VIoT, we resort to the ReAct instruction tuning method based on VIoT-Tool to learn the tool capability. Quantitative and qualitative experiments and analyses demonstrate the effectiveness of VIoTGPT. We believe VIoTGPT contributes to improving human-centered experiences in VIoT applications. The project website is https://github.com/zhongyy/VIoTGPT.

Details

1009240
Business indexing term
Title
VIoTGPT: Learning to Schedule Vision Tools in LLMs towards Intelligent Video Internet of Things
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Dec 22, 2024
Section
Computer Science
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-12-24
Milestone dates
2023-12-01 (Submission v1); 2024-12-22 (Submission v2)
Publication history
 
 
   First posting date
24 Dec 2024
ProQuest document ID
2897289851
Document URL
https://www.proquest.com/working-papers/viotgpt-learning-schedule-vision-tools-llms/docview/2897289851/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-12-25
Database
ProQuest One Academic