Full text

Turn on search term navigation

© 2023 Alabadi and Habbal. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The fourth industrial revolution, often referred to as Industry 4.0, has revolutionized the manufacturing sector by integrating emerging technologies such as artificial intelligence (AI), machine and deep learning, Industrial Internet of Things (IIoT), cloud computing, cyber physical systems (CPSs) and cognitive computing, throughout the production life cycle. Predictive maintenance (PdM) emerges as a critical component, utilizing data analytic to track machine health and proactively detect machinery failures. Deep learning (DL), is pivotal in this context, offering superior accuracy in prediction through neural networks’ data processing capabilities. However, DL adoption in PdM faces challenges, including continuous model updates and domain dependence. Meanwhile, centralized DL models, prevalent in PdM, pose security risks such as central points of failure and unauthorized access. To address these issues, this study presents an innovative decentralized PdM system integrating DL, blockchain, and decentralized storage based on the InterPlanetary File System (IPFS) for accurately predicting Remaining Useful Lifetime (RUL). DL handles predictive tasks, while blockchain secures data orchestration. Decentralized storage safeguards model metadata and training data for dynamic models. The system features synchronized two DL pipelines for time series data, encompassing prediction and training mechanisms. The detailed material and methods of this research shed light on the system’s development and validation processes. Rigorous validation confirms the system’s accuracy, performance, and security through an experimental testbed. The results demonstrate the system’s dynamic updating and domain independence. Prediction model surpass state-of-the-art models in terms of the root mean squared error (RMSE) score. Blockchain-based scalability performance was tested based on smart contract gas usage, and the analysis shows efficient performance across varying input and output data scales. A comprehensive CIA analysis highlights the system’s robust security features, addressing confidentiality, integrity, and availability aspects. The proposed decentralized predictive maintenance (PdM) system, which incorporates deep learning (DL), blockchain technology, and decentralized storage, has the potential to improve predictive accuracy and overcome significant security and scalability obstacles. Consequently, this system holds promising implications for the advancement of predictive maintenance in the context of Industry 4.0.

Details

Title
Next-generation predictive maintenance: leveraging blockchain and dynamic deep learning in a domain-independent system
Author
Alabadi, Montdher; Habbal, Adib
Publication year
2023
Publication date
Dec 6, 2023
Publisher
PeerJ, Inc.
e-ISSN
23765992
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2898658897
Copyright
© 2023 Alabadi and Habbal. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.