Content area

Abstract

Performance-critical industrial applications, including large-scale program, network, and distributed system analyses, are increasingly reliant on recursive queries for data analysis. Yet traditional relational algebra-based query optimization techniques do not scale well to recursive query processing due to the iterative nature of query evaluation, where relation cardinalities can change unpredictably during the course of a single query execution. To avoid error-prone cardinality estimation, adaptive query processing techniques use runtime information to inform query optimization, but these systems are not optimized for the specific needs of recursive query processing. In this paper, we introduce Adaptive Metaprogramming, an innovative technique that shifts recursive query optimization and code generation from compile-time to runtime using principled metaprogramming, enabling dynamic optimization and re-optimization before and after query execution has begun. We present a custom join-ordering optimization applicable at multiple stages during query compilation and execution. Through Carac, a custom Datalog engine, we evaluate the optimization potential of Adaptive Metaprogramming and show unoptimized recursive query execution time can be improved by three orders of magnitude and hand-optimized queries by 6x.

Details

1009240
Identifier / keyword
Title
Adaptive Recursive Query Optimization
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Mar 18, 2024
Section
Computer Science
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-03-20
Milestone dates
2023-12-07 (Submission v1); 2024-03-18 (Submission v2)
Publication history
 
 
   First posting date
20 Mar 2024
ProQuest document ID
2899514385
Document URL
https://www.proquest.com/working-papers/adaptive-recursive-query-optimization/docview/2899514385/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-03-21
Database
ProQuest One Academic