Abstract

Neural networks are powerful tools for solving complex problems, but finding the right network topology for a given task remains an open question. Biology uses neurogenesis and structural plasticity to solve this problem. Advanced neural network algorithms are mostly relying on synaptic plasticity and learning. The main limitation in reconciling these two approaches is the lack of a viable hardware solution that could reproduce the bottom-up development of biological neural networks. Here, we show how the dendritic growth of PEDOT:PSS-based fibers through AC electropolymerization can implement structural plasticity during network development. We find that this strategy follows Hebbian principles and is able to define topologies that leverage better computing performances with sparse synaptic connectivity for solving non-trivial tasks. This approach is validated in software simulation, and offers up to 61% better network sparsity on classification and 50% in signal reconstruction tasks.

Neural networks are powerful tools for solving complex problems, but finding the right network topology for a given task remains an open question. Here, the authors propose a bio-inspired artificial neural network hardware able to self-adapt to solve new complex tasks, by autonomously connecting nodes using electropolymerization.

Details

Title
Structural plasticity for neuromorphic networks with electropolymerized dendritic PEDOT connections
Author
Janzakova, Kamila 1 ; Balafrej, Ismael 2   VIAFID ORCID Logo  ; Kumar, Ankush 1   VIAFID ORCID Logo  ; Garg, Nikhil 3 ; Scholaert, Corentin 1 ; Rouat, Jean 2   VIAFID ORCID Logo  ; Drouin, Dominique 4   VIAFID ORCID Logo  ; Coffinier, Yannick 1 ; Pecqueur, Sébastien 1   VIAFID ORCID Logo  ; Alibart, Fabien 3   VIAFID ORCID Logo 

 Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, Lille, France (GRID:grid.503422.2) (ISNI:0000 0001 2242 6780) 
 Université de Sherbrooke, Institut interdisciplinaire d’innovation technologique (3IT), Sherbrooke, Canada (GRID:grid.86715.3d) (ISNI:0000 0000 9064 6198); Université de Sherbrooke, NECOTIS Research Lab, faculté de génie électrique et informatique, Sherbrooke, Canada (GRID:grid.86715.3d) (ISNI:0000 0000 9064 6198) 
 Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, Lille, France (GRID:grid.503422.2) (ISNI:0000 0001 2242 6780); Université de Sherbrooke, Institut interdisciplinaire d’innovation technologique (3IT), Sherbrooke, Canada (GRID:grid.86715.3d) (ISNI:0000 0000 9064 6198); CNRS, Université de Sherbrooke, Laboratoire Nanotechnologies & Nanosystèmes (LN2), Sherbrooke, Canada (GRID:grid.86715.3d) (ISNI:0000 0000 9064 6198) 
 Université de Sherbrooke, Institut interdisciplinaire d’innovation technologique (3IT), Sherbrooke, Canada (GRID:grid.86715.3d) (ISNI:0000 0000 9064 6198); CNRS, Université de Sherbrooke, Laboratoire Nanotechnologies & Nanosystèmes (LN2), Sherbrooke, Canada (GRID:grid.86715.3d) (ISNI:0000 0000 9064 6198) 
Pages
8143
Publication year
2023
Publication date
2023
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2899555535
Copyright
© The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.