It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Chronic kidney disease (CKD) is determined by an interplay of monogenic, polygenic, and environmental risks. Autosomal dominant polycystic kidney disease (ADPKD) and COL4A-associated nephropathy (COL4A-AN) represent the most common forms of monogenic kidney diseases. These disorders have incomplete penetrance and variable expressivity, and we hypothesize that polygenic factors explain some of this variability. By combining SNP array, exome/genome sequence, and electronic health record data from the UK Biobank and All-of-Us cohorts, we demonstrate that the genome-wide polygenic score (GPS) significantly predicts CKD among ADPKD monogenic variant carriers. Compared to the middle tertile of the GPS for noncarriers, ADPKD variant carriers in the top tertile have a 54-fold increased risk of CKD, while ADPKD variant carriers in the bottom tertile have only a 3-fold increased risk of CKD. Similarly, the GPS significantly predicts CKD in COL4A-AN carriers. The carriers in the top tertile of the GPS have a 2.5-fold higher risk of CKD, while the risk for carriers in the bottom tertile is not different from the average population risk. These results suggest that accounting for polygenic risk improves risk stratification in monogenic kidney disease.
Polygenic factors may partially explain the observed variability in the penetrance of monogenic diseases. Here, the authors show that a polygenic risk score for chronic kidney disease is significantly associated with a higher risk of renal dysfunction in the two most common monogenic forms of kidney disease, suggesting that accounting for polygenic factors improves risk stratification in monogenic kidney disease.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details






1 Columbia University, Division of Nephrology, Department of Medicine, Vagelos College of Physicians & Surgeons, New York, USA (GRID:grid.21729.3f) (ISNI:0000 0004 1936 8729)
2 Columbia University, Department of Biomedical Informatics, Vagelos College of Physicians & Surgeons, New York, USA (GRID:grid.21729.3f) (ISNI:0000 0004 1936 8729)
3 Mayo Clinic, Division of Nephrology and Hypertension, Rochester, USA (GRID:grid.66875.3a) (ISNI:0000 0004 0459 167X)