Abstract

Background

Sodium-glucose co-transporter 2 (SGLT2) inhibitors reduced the risk of cardiovascular and renal outcomes in patients with type 2 diabetes (T2D), but the underlying mechanism has not been well elucidated. The circulating levels of proteins and metabolites reflect the overall state of the human body. This study aimed to evaluate the effect of dapagliflozin on the proteome and metabolome in patients with newly diagnosed T2D.

Methods

A total of 57 newly diagnosed T2D patients were enrolled, and received 12 weeks of dapagliflozin treatment (10 mg/d, AstraZeneca). Serum proteome and metabolome were investigated at the baseline and after dapagliflozin treatment.

Results

Dapagliflozin significantly decreased HbA1c, BMI, and HOMA-IR in T2D patients (all p < 0.01). Multivariate models indicated clear separations of proteomics and metabolomics data between the baseline and after dapagliflozin treatment. A total of 38 differentially abundant proteins including 23 increased and 15 decreased proteins, and 35 differentially abundant metabolites including 17 increased and 18 decreased metabolites, were identified. In addition to influencing glucose metabolism (glycolysis/gluconeogenesis and pentose phosphate pathway), dapagliflozin significantly increased sex hormone-binding globulin, transferrin receptor protein 1, disintegrin, and metalloprotease-like decysin-1 and apolipoprotein A-IV levels, and decreased complement C3, fibronectin, afamin, attractin, xanthine, and uric acid levels.

Conclusions

The circulating proteome and metabolome in newly diagnosed T2D patients were significantly changed after dapagliflozin treatment. These changes in proteins and metabolites might be associated with the beneficial effect of dapagliflozin on cardiovascular and renal outcomes.

Details

Title
Effect of dapagliflozin on proteomics and metabolomics of serum from patients with type 2 diabetes
Author
Liu, Jia; Chang, Xiaona; Ding, Xiaoyu; He, Xueqing; Wang, Jiaxuan; Wang, Guang
Pages
1-15
Section
Research
Publication year
2023
Publication date
2023
Publisher
BioMed Central
e-ISSN
1758-5996
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2902128840
Copyright
© 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.