It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Influence operations are large-scale efforts to manipulate public opinion. The rapid detection and disruption of these operations is critical for healthy public discourse. Emergent AI technologies may enable novel operations that evade detection and influence public discourse on social media with greater scale, reach, and specificity. New methods of detection with inductive learning capacity will be needed to identify novel operations before they indelibly alter public opinion and events. To this end, we develop an inductive learning framework that: (1) determines content- and graph-based indicators that are not specific to any operation; (2) uses graph learning to encode abstract signatures of coordinated manipulation; and (3) evaluates generalization capacity by training and testing models across operations originating from Russia, China, and Iran. We find that this framework enables strong cross-operation generalization while also revealing salient indicators-illustrating a generic approach which directly complements transductive methodologies, thereby enhancing detection coverage.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 The George Washington University, Department of Physics, Washington, USA (GRID:grid.253615.6) (ISNI:0000 0004 1936 9510)
2 The George Washington University, Department of Engineering Management and Systems Engineering, Washington, USA (GRID:grid.253615.6) (ISNI:0000 0004 1936 9510)




