It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Human accuracy in detecting deception with intuitive judgments has been proven to not go above the chance level. Therefore, several automatized verbal lie detection techniques employing Machine Learning and Transformer models have been developed to reach higher levels of accuracy. This study is the first to explore the performance of a Large Language Model, FLAN-T5 (small and base sizes), in a lie-detection classification task in three English-language datasets encompassing personal opinions, autobiographical memories, and future intentions. After performing stylometric analysis to describe linguistic differences in the three datasets, we tested the small- and base-sized FLAN-T5 in three Scenarios using 10-fold cross-validation: one with train and test set coming from the same single dataset, one with train set coming from two datasets and the test set coming from the third remaining dataset, one with train and test set coming from all the three datasets. We reached state-of-the-art results in Scenarios 1 and 3, outperforming previous benchmarks. The results revealed also that model performance depended on model size, with larger models exhibiting higher performance. Furthermore, stylometric analysis was performed to carry out explainability analysis, finding that linguistic features associated with the Cognitive Load framework may influence the model’s predictions.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 IMT School for Advanced Studies Lucca, Molecular Mind Lab, Lucca, Italy (GRID:grid.462365.0) (ISNI:0000 0004 1790 9464)
2 University of Padova, Department of Mathematics “Tullio Levi-Civita”, Padova, Italy (GRID:grid.5608.b) (ISNI:0000 0004 1757 3470)
3 University of Padova, Department of General Psychology, Padova, Italy (GRID:grid.5608.b) (ISNI:0000 0004 1757 3470)




