It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Biological tissue exhibits a strong dielectric dispersion from DC to GHz. Implementing biological dispersion in the time domain with commercial finite element method software could help improve engineering analysis of electrical transient phenomena. This article describes the steps required to implement time-domain biological dispersion with commercial finite element method software. The study begins with the presentation of a genetic algorithm to fit the experimental dispersion curve of Solanum tuberosum (potato tuber) to multipoles of first-order Debye dispersion. The results show that it is possible to represent the biological dispersion of S. tuberosum from 40 Hz to 10 MHz in a 4-pole Debye dispersion. Then, a set of auxiliary differential equations is used to transform the multipole Debye dispersion from the frequency domain to the time domain. The equations are implemented in the commercial software COMSOL Multiphysics. A comparison between the frequency and time domain simulations was used to validate the method. An analysis of the electric current with square-wave pulsed voltage was performed. We found that the computer implementation proposed in this work can describe the biological dispersion and predict the electric current.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Federal University of Santa Catarina, Department of Electrical and Electronic Engineering, Centre of Technology, Institute of Biomedical Engineering, Florianopolis, Brazil (GRID:grid.411237.2) (ISNI:0000 0001 2188 7235)
2 Federal University of Santa Catarina, Department of Control, Automation and Computer Engineering, Blumenau, Brazil (GRID:grid.411237.2) (ISNI:0000 0001 2188 7235)