Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

MicroRNAs and the WNT signaling cascade regulate the pathogenetic mechanisms of atherosclerotic coronary artery disease (CAD) development. Objective: To evaluate the expression of microRNAs (miR-21a, miR-145, and miR-221) and the role of the WNT signaling cascade (WNT1, WNT3a, WNT4, and WNT5a) in obstructive CAD and ischemia with no obstructive coronary arteries (INOCA). Method: The cross-sectional observational study comprised 94 subjects. The expression of miR-21a, miR-145, miR-221 (RT-PCR) and the protein levels of WNT1, WNT3a, WNT4, WNT5a, LRP6, and SIRT1 (ELISA) were estimated in the plasma of 20 patients with INOCA (66.5 [62.8; 71.2] years; 25% men), 44 patients with obstructive CAD (64.0 [56.5; 71,0] years; 63.6% men), and 30 healthy volunteers without risk factors for cardiovascular diseases (CVD). Results: Higher levels of WNT1 (0.189 [0.184; 0.193] ng/mL vs. 0.15 [0.15–0.16] ng/mL, p < 0.001) and WNT3a (0.227 [0.181; 0.252] vs. 0.115 [0.07; 0.16] p < 0.001) were found in plasma samples from patients with obstructive CAD, whereas the INOCA group was characterized by higher concentrations of WNT4 (0.345 [0.278; 0.492] ng/mL vs. 0.203 [0.112; 0.378] ng/mL, p = 0.025) and WNT5a (0.17 [0.16; 0.17] ng/mL vs. 0.01 [0.007; 0.018] ng/mL, p < 0.001). MiR-221 expression level was higher in all CAD groups compared to the control group (p < 0.001), whereas miR-21a was more highly expressed in the control group than in the obstructive (p = 0.012) and INOCA (p = 0.003) groups. Correlation analysis revealed associations of miR-21a expression with WNT1 (r = −0.32; p = 0.028) and SIRT1 (r = 0.399; p = 0.005) protein levels in all CAD groups. A positive correlation between miR-145 expression and the WNT4 protein level was observed in patients with obstructive CAD (r = 0.436; p = 0.016). Based on multivariate regression analysis, a mathematical model was constructed that predicts the type of coronary lesion. WNT3a and LRP6 were the independent predictors of INOCA (p < 0.001 and p = 0.002, respectively). Conclusions: Activation of the canonical cascade of WNT-β-catenin prevailed in patients with obstructive CAD, whereas in the INOCA and control groups, the activity of the non-canonical pathway was higher. It can be assumed that miR-21a has a negative effect on the formation of atherosclerotic CAD. Alternatively, miR-145 could be involved in the development of coronary artery obstruction, presumably through the regulation of the WNT4 protein. A mathematical model with WNT3a and LRP6 as predictors allows for the prediction of the type of coronary artery lesion.

Details

Title
MiRNA-21a, miRNA-145, and miRNA-221 Expression and Their Correlations with WNT Proteins in Patients with Obstructive and Non-Obstructive Coronary Artery Disease
Author
Iusupova, Alfiya Oskarovna 1 ; Pakhtusov, Nikolay Nikolaevich 1   VIAFID ORCID Logo  ; Slepova, Olga Alexandrovna 1   VIAFID ORCID Logo  ; Belenkov, Yuri Nikitich 1   VIAFID ORCID Logo  ; Privalova, Elena Vitalievna 1 ; Bure, Irina Vladimirovna 2 ; Vetchinkina, Ekaterina Alexandrovna 3   VIAFID ORCID Logo  ; Nemtsova, Marina Vyacheslavovna 4 

 Department of Hospital Therapy No 1, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia[email protected] (O.A.S.); [email protected] (Y.N.B.); 
 Laboratory of Medical Genetics, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; [email protected] (I.V.B.); [email protected] (E.A.V.); [email protected] (M.V.N.); Research Institute of Molecular and Personalized Medicine, Russian Medical Academy of Continuous Professional Education, 125445 Moscow, Russia 
 Laboratory of Medical Genetics, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; [email protected] (I.V.B.); [email protected] (E.A.V.); [email protected] (M.V.N.) 
 Laboratory of Medical Genetics, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; [email protected] (I.V.B.); [email protected] (E.A.V.); [email protected] (M.V.N.); Laboratory of Epigenetics, Research Centre for Medical Genetics, 115522 Moscow, Russia 
First page
17613
Publication year
2023
Publication date
2023
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2904658383
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.