Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Low-temperature nitrogen adsorption is a widely used method for the research and evaluation of gas shale’s pore structure. The existing interpretation method, utilizing gas adsorption isotherms to obtain pore size distribution (PSD), is always based on the one-dimensional geometry model, while the void space of gas shale has strong multi-dimensional characteristics. It is necessary to investigate the nitrogen condensation and evaporation behavior in multidimensional structures. In this study, a series of two-dimensional and three-dimensional models based on ink-bottle pores were constructed. A hybrid molecular simulation approach combining grand canonical Monte Carlo (GCMC) and molecular dynamics (MD) is proposed to simulate the low-temperature nitrogen adsorption isotherms. Three aspects have been analyzed in detail. Compared with the conventional understanding that the threshold of cavitation in the ink-bottle pore only relates to throat diameter, this study discloses a wider and more comprehensive range of conditions of cavitation that considers both the throat length and diameter. As pore spaces of shale samples consist of many complex interconnected pores, the multi-stage ink-bottle pore model is more suitable than the single ink-bottle pore model to similarly reproduce the wider cavitation pressure range. A more universal parameter is proposed that quantitatively unifies the influence of cavity diameter and length on condensation pressure and has good applicability in cavities with different shapes. This work quantitatively studies the nitrogen adsorption isotherms of three-dimensional complex nanopore structures using molecular simulation and provides a reasonable explanation for the low-temperature nitrogen adsorption isotherms of gas shale.

Details

Title
Molecular Simulation of Nitrogen Adsorption in Multidimensional Nanopores and New Insights into the Inversion of Pore Size Distribution for Gas Shale
Author
Chen, Zhuo 1 ; Lin, Mian 1 ; Jiang, Wenbin 1   VIAFID ORCID Logo  ; Cao, Gaohui 2 

 Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; [email protected] (Z.C.); [email protected] (G.C.); School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China 
 Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; [email protected] (Z.C.); [email protected] (G.C.) 
First page
8066
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2904676101
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.