Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Conventional facemask detection algorithms face challenges of insufficient accuracy, large model size, and slow computation speed, limiting their deployment in real-world scenarios, especially on edge devices. Aiming at addressing these issues, we proposed a DB-YOLO facemask intelligent detection algorithm, which is a lightweight solution that leverages bidirectional weighted feature fusion. Our method is built on the YOLOv5 algorithm model, replacing the original YOLOv5 backbone network with the lightweight ShuffleNetv2 to reduce parameters and computational requirements. Additionally, we integrated BiFPN as the feature fusion layer, enhancing the model’s detection capability for objects of various scales. Furthermore, we employed a CARAFE lightweight upsampling factor to improve the model’s perception of details and small-sized objects and the EIOU loss function to expedite model convergence. We validated the effectiveness of our proposed method through experiments conducted on the Pascal VOC2007+2012 and Face_Mask datasets. Our experimental results demonstrate that the DB-YOLO model boasts a compact size of approximately 1.92 M. It achieves average precision values of 70.1% and 93.5% on the Pascal VOC2007+2012 and Face_Mask datasets, respectively, showcasing a 2.3% improvement in average precision compared to the original YOLOv5s. Furthermore, the model’s size is reduced by 85.8%. We also successfully deployed the model on Android devices using the NCNN framework, achieving a detection speed of up to 33 frames per second. Compared to lightweight algorithm models like YOLOv5n, YOLOv4-Tiny, and YOLOv3-Tiny, DB-YOLO not only reduces the model’s size but also effectively improves detection accuracy, exhibiting excellent practicality and promotional value on edge devices.

Details

Title
Lightweight DB-YOLO Facemask Intelligent Detection and Android Application Based on Bidirectional Weighted Feature Fusion
Author
Qin, Bin 1 ; Zeng, Ying 2 ; Wang, Xin 1   VIAFID ORCID Logo  ; Peng, Junmin 1 ; Li, Tao 3 ; Wang, Teng 4 ; Qin, Yuxin 5 

 School of Electrical and Information Engineering, Hunan University of Technology, Zhuzhou 412007, China; [email protected] (B.Q.); [email protected] (J.P.) 
 School of Computer Science, Hunan University of Technology, Zhuzhou 412007, China; [email protected] 
 College of Railway Transportation, Hunan University of Technology, Zhuzhou 412007, China; [email protected] 
 School of Computer Science, South China Normal University, Guangzhou 510631, China 
 School of Computer Science, University of Glasgow, Glasgow G12 8QQ, UK; [email protected] 
First page
4936
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2904838260
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.