Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Metabolic reprogramming is a key alteration in tumorigenesis. In cancer cells, changes in metabolic fluxes are required to cope with large demands on ATP, NADPH, and NADH, as well as carbon skeletons. In particular, dysregulation in lipid metabolism ensures a great energy source for the cells and sustains cell membrane biogenesis and signaling molecules, which are necessary for tumor progression. Increased lipid uptake and synthesis results in intracellular lipid accumulation as lipid droplets (LDs), which in recent years have been considered hallmarks of malignancies. Here, we review current evidence implicating the biogenesis, composition, and functions of lipid droplets in acute myeloid leukemia (AML). This is an aggressive hematological neoplasm originating from the abnormal expansion of myeloid progenitor cells in bone marrow and blood and can be fatal within a few months without treatment. LD accumulation positively correlates with a poor prognosis in AML since it involves the activation of oncogenic signaling pathways and cross-talk between the tumor microenvironment and leukemic cells. Targeting altered LD production could represent a potential therapeutic strategy in AML. From this perspective, we discuss the main inhibitors tested in in vitro AML cell models to block LD formation, which is often associated with leukemia aggressiveness and which may find clinical application in the future.

Details

Title
An Overview on Lipid Droplets Accumulation as Novel Target for Acute Myeloid Leukemia Therapy
Author
Nisticò, Clelia 1 ; Chiarella, Emanuela 2   VIAFID ORCID Logo 

 Candiolo Cancer Institute, FPO-IRCCS, Department of Oncology, University of Torino, 10124 Candiolo, Italy 
 Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University “Magna Græcia”, 88100 Catanzaro, Italy 
First page
3186
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
22279059
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2904899694
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.