Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Accurate forest biomass estimation serves as the foundation of forest management and holds critical significance for a comprehensive understanding of forest carbon storage and balance. This study aimed to integrate Landsat 8 OLI and Sentinel-1A SAR satellite image data and selected a portion of the Shanxia Experimental Forest in Jiangxi Province as the study area to establish a biomass estimation model by screening influencing factors. Firstly, we extracted spectral information, vegetation indices, principal component features, and texture features within 3 × 3-pixel neighborhoods from Landsat 8 OLI. Moreover, we incorporated Sentinel-1’s VV (vertical transmit–vertical receive) and VH (vertical transmit–horizontal receive) polarizations. We proposed an ensemble AGB (aboveground biomass) model based on a neural network. In addition to the neural network model, namely the tent mapping atom search optimized BP neural network (Tent_ASO_BP) model, partial least squares regression (PLSR), support vector machine (SVR), and random forest (RF) regression prediction techniques were also employed to establish the relationship between multisource remote sensing data and forest biomass. Optical variables (Landsat 8 OLI), SAR variables (Sentinel-1A), and their combinations were input into the four prediction models. The results indicate that Tent_ ASO_ BP model can better estimate forest biomass. Compared to pure optical or single microwave data, the Tent_ASO_BP model with the optimal combination of optical and microwave input features achieved the highest accuracy. Its R2 was 0.74, root mean square error (RMSE) was 11.54 Mg/ha, and mean absolute error (MAE) was 9.06 Mg/ha. Following this, the RF model (R2 = 0.54, RMSE = 21.33 Mg/ha, MAE = 17.35 Mg/ha), SVR (R2 = 0.52, RMSE = 17.66 Mg/ha, MAE = 15.11 Mg/ha), and PLSR (R2 = 0.50, RMSE = 16.52 Mg/ha, MAE = 12.15 Mg/ha) models were employed. In conclusion, the BP neural network model improved by tent mapping atom search optimization algorithm significantly enhanced the accuracy of AGB estimation in biomass studies. This will provide a new avenue for large-scale forest resource surveys.

Details

Title
Aboveground Forest Biomass Estimation Using Tent Mapping Atom Search Optimized Backpropagation Neural Network with Landsat 8 and Sentinel-1A Data
Author
Chen, Zhao 1 ; Sun, Zhibin 1 ; Zhang, Huaiqing 2   VIAFID ORCID Logo  ; Zhang, Huacong 2   VIAFID ORCID Logo  ; Qiu, Hanqing 2   VIAFID ORCID Logo 

 School of Information Science and Technology, Beijing Forestry University, Beijing 100083, China; [email protected] (Z.C.); [email protected] (Z.S.); Engineering Research Center for Forestry–Oriented Intelligent Information Processing, National Forestry and Grassland Administration, Beijing 100083, China 
 Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Beijing 100091, China; [email protected] (H.Z.); [email protected] (H.Q.) 
First page
5653
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2904925032
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.