Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper presents a fractional linear reservoir model as the elementary response function of hydrologic systems corresponding to the classical linear reservoir model and tests its applicability to rainfall–runoff modeling. To this end, we formulate a fractional linear reservoir model in terms of fractional calculus following the same procedure as the classical linear reservoir model and, at the simplest level, compare its performance of rainfall–runoff modeling with the linear and nonlinear reservoir models. The impulse response function of a fractional linear reservoir model, a probability density function (PDF) following the Mittag–Leffler distribution, shows nonlinearity due to its time-variant behavior compared to that of a linear reservoir model. In traditional linear hydrologic system theory, the lag and route version of a fractional linear reservoir model produces the fast-rising and slow-recession of runoff hydrographs, implying the mixed response of linear and nonlinear reservoir models to rainfall. So, a fractional linear reservoir model could be considered a fundamental tool to effectively reflect the nonlinearity of rainfall–runoff phenomena within the framework of the linear hydrologic system theory. In this respect, the fractional order of the storage relationship specifying a fractional linear reservoir model can be viewed as a kind of parameter to quantify the heterogeneity of runoff generation within a river basin.

Details

Title
Fractional Linear Reservoir Model as Elementary Hydrologic Response Function
Author
Yeo-Jin, Yoon 1 ; Joo-Cheol, Kim 2 

 Department of Disaster Safety & Fire, Konyang University, 121 Daehak-ro, Nonsan-si 32992, Chungcheongnam-do, Republic of Korea; [email protected] 
 International Water Resources Research Institute, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Chungcheongnam-do, Republic of Korea 
First page
4254
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20734441
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2904928932
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.