Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Medical image analysis forms the basis of image-guided surgery (IGS) and many of its fundamental tasks. Driven by the growing number of medical imaging modalities, the research community of medical imaging has developed methods and achieved functionality breakthroughs. However, with the overwhelming pool of information in the literature, it has become increasingly challenging for researchers to extract context-relevant information for specific applications, especially when many widely used methods exist in a variety of versions optimized for their respective application domains. By being further equipped with sophisticated three-dimensional (3D) medical image visualization and digital reality technology, medical experts could enhance their performance capabilities in IGS by multiple folds. The goal of this narrative review is to organize the key components of IGS in the aspects of medical image processing and visualization with a new perspective and insights. The literature search was conducted using mainstream academic search engines with a combination of keywords relevant to the field up until mid-2022. This survey systemically summarizes the basic, mainstream, and state-of-the-art medical image processing methods as well as how visualization technology like augmented/mixed/virtual reality (AR/MR/VR) are enhancing performance in IGS. Further, we hope that this survey will shed some light on the future of IGS in the face of challenges and opportunities for the research directions of medical image processing and visualization.

Details

Title
Modern Image-Guided Surgery: A Narrative Review of Medical Image Processing and Visualization
Author
Lin, Zhefan 1   VIAFID ORCID Logo  ; Chen, Lei 2 ; Yang, Liangjing 1   VIAFID ORCID Logo 

 School of Mechanical Engineering, Zhejiang University, Hangzhou 310030, China; [email protected]; ZJU-UIUC Institute, International Campus, Zhejiang University, Haining 314400, China; [email protected] 
 ZJU-UIUC Institute, International Campus, Zhejiang University, Haining 314400, China; [email protected] 
First page
9872
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2904932332
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.