Abstract

The interaction between human head and GSM antenna evaluations are usually conducted in freespace situations but wireless communication devices are frequently used in enclosed environments, such as vehicle, that consist of metallic boundaries. In such fully enclosed or semi-enclosed spaces, human exposure in terms of SAR is closely related to the EM field, which is multiplied, reflected and scattered by the metallic walls of the enclosure. This could lead to complicated resonance effects and affections in the antenna performances. This possible argument of an EM field inside an enclosure has raised serious concerns among the general public. This paper will therefore focus on the impact of dipole antenna modeling the handsets on the SAR distribution inside a cavity modeling the vehicle. Theoretical formulation and simulations are used to study this phenomenon but there is a lot of limitations. Despite, modulation using numerical method are used. A MoMGEC modeling approach is applied to study the behavior of a dipole antenna resonating at 1.8 GHz. First of all, we are interested in studying the convergence of the input impedance. The current and the electric field distribution are simulated. The specific absorption rate (SAR) is examined for several different tissues.

Details

Title
Modulation of the Antenna-Head Interaction inside a Closed Environment Using MOM-GEC Method
Author
Messaoudi, Hafawa; Aguili, Taoufik
Pages
373-379
Section
Articles
Publication year
2018
Publication date
2018
Publisher
River Publishers
ISSN
10544887
e-ISSN
19435711
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2908970097
Copyright
© 2018. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.