It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
An exciting prospect in the field of magnetic fluid hyperthermia (MFH) has been the integration of noble rare earth elements with biopolymers (chitosan/dextran) that have optimum structures to tune specific effects on magnetic nanoparticles (MNPs). Remarkably, it has been demonstrated that dipole–dipole interactions have a significant influence on nanoparticle dynamics. In this article, we present an exhaustive scrutiny of dipolar interactions and how this affects the efficiency of MFH applications. In particular, we prepare chitosan and dextran-coated Tb-doped MNPs and study whether it is possible to increase the heat released by controlling the dipole–dipole interactions. It has been indicated that even moderate control of agglomeration may substantially impact the structure and magnetization dynamics of the system. Besides estimating the specific loss power value, our findings provide a deep insight into the relaxation mechanisms and bring to light how to tune the self-heating efficacy towards magnetic hyperthermia.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 National Institute of Technology Nagaland, Nanomagnetism Group, Department of Physics, Dimapur, India (GRID:grid.506040.7) (ISNI:0000 0004 4911 0761)