Content area
Background
The nationally determined contribution (NDC) presented by Argentina within the framework of the Paris Agreement is aligned with the decisions made in the context of the United Nations Framework Convention on Climate Change (UNFCCC) on the reduction of emissions derived from deforestation and forest degradation, as well as forest carbon conservation (REDD+). In addition, climate change constitutes one of the greatest threats to forest biodiversity and ecosystem services. However, the soil organic carbon (SOC) stocks of native forests have not been incorporated into the Forest Reference Emission Levels calculations and for conservation planning under climate variability due to a lack of information. The objectives of this study were: (i) to model SOC stocks to 30 cm of native forests at a national scale using climatic, topographic and vegetation as predictor variables, and (ii) to relate SOC stocks with spatial–temporal remotely sensed indices to determine biodiversity conservation concerns due to threats from high inter-annual climate variability.
Methods
We used 1040 forest soil samples (0–30 cm) to generate spatially explicit estimates of SOC native forests in Argentina at a spatial resolution of approximately 200 m. We selected 52 potential predictive environmental covariates, which represent key factors for the spatial distribution of SOC. All covariate maps were uploaded to the Google Earth Engine cloud-based computing platform for subsequent modelling. To determine the biodiversity threats from high inter-annual climate variability, we employed the spatial–temporal satellite-derived indices based on Enhanced Vegetation Index (EVI) and land surface temperature (LST) images from Landsat imagery.
Results
SOC model (0–30 cm depth) prediction accounted for 69% of the variation of this soil property across the whole native forest coverage in Argentina. Total mean SOC stock reached 2.81 Pg C (2.71–2.84 Pg C with a probability of 90%) for a total area of 460,790 km2, where Chaco forests represented 58.4% of total SOC stored, followed by Andean Patagonian forests (16.7%) and Espinal forests (10.0%). SOC stock model was fitted as a function of regional climate, which greatly influenced forest ecosystems, including precipitation (annual mean precipitation and precipitation of warmest quarter) and temperature (day land surface temperature, seasonality, maximum temperature of warmest month, month of maximum temperature, night land surface temperature, and monthly minimum temperature). Biodiversity was influenced by the SOC levels and the forest regions.
Conclusions
In the framework of the Kyoto Protocol and REDD+, information derived in the present work from the estimate of SOC in native forests can be incorporated into the annual National Inventory Report of Argentina to assist forest management proposals. It also gives insight into how native forests can be more resilient to reduce the impact of biodiversity loss.
Details
Forest management;
Annual precipitation;
Climate variability;
Landsat;
Vegetation;
Ecosystem services;
Mitigation;
Biodiversity;
Organic carbon;
Seasonal variations;
Forest soils;
Land surface temperature;
Forests;
Precipitation;
Climate change;
Variability;
Deforestation;
Conservation;
Paris Agreement;
Spatial distribution;
Biodiversity loss;
Forest ecosystems;
Vegetation index;
Carbon;
Wildlife conservation;
Soil properties;
Terrestrial ecosystems;
Annual;
Seasonality;
Probability theory;
Forest degradation;
Maps;
Satellite imagery;
Remote sensing;
Spatial discrimination;
International organizations;
Image enhancement;
Emissions control;
Stocks;
Spatial resolution;
Cloud computing;
Landsat satellites;
Surface temperature
; Gaitán, Juan 2 ; Mastrangelo, Matías 3 ; Nosetto, Marcelo 4 ; Villagra, Pablo E. 5 ; Balducci, Ezequiel 6 ; Pinazo, Martín 6 ; Eclesia, Roxana P. 6 ; Von Wallis, Alejandra 6 ; Villarino, Sebastián 3 ; Alaggia, Francisco 6 ; Polo, Marina González 7 ; Manrique, Silvina 8 ; Meglioli, Pablo A. 5 ; Rodríguez-Souilla, Julián 9 ; Mónaco, Martín 10 ; Chaves, Jimena E. 9 ; Medina, Ariel 10 ; Gasparri, Ignacio 11 ; Arnesi, Eugenio Alvarez 12 ; Barral, María Paula 3 ; von Müller, Axel 6 ; Pahr, Norberto M. 6 ; Echevarria, Josefina Uribe 6 ; Fernández, Pedro 13 ; Morsucci, Marina 5 ; López, Dardo 6 ; Cellini, Juan Manuel 14 ; Alvarez, Leandro 5 ; Barberis, Ignacio 12 ; Colomb, Hernán 15 ; La Manna, Ludmila 16 ; Barbaro, Sebastián 6 ; Blundo, Cecilia 11 ; Sirimarco, Ximena 3 ; Cavallero, Laura 6 ; Zalazar, Gualberto 5 ; Pastur, Guillermo Martínez 9 1 Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina (GRID:grid.419231.c) (ISNI:0000 0001 2167 7174); Universidad Nacional de la Patagonia Austral (UNPA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Gallegos, Argentina (GRID:grid.441716.1) (ISNI:0000 0001 2219 7375)
2 Universidad Nacional de Luján, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Luján, Argentina (GRID:grid.26089.35) (ISNI:0000 0001 2228 6538)
3 Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Grupo de Estudio de Agroecosistemas y Paisajes Rurales (GEAP), Mar del Plata, Argentina (GRID:grid.412221.6) (ISNI:0000 0000 9969 0902)
4 CCT San Luis, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Luis, Argentina (GRID:grid.423606.5) (ISNI:0000 0001 1945 2152)
5 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA), Mendoza, Argentina (GRID:grid.412108.e) (ISNI:0000 0001 2185 5065)
6 Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina (GRID:grid.419231.c) (ISNI:0000 0001 2167 7174)
7 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Bariloche, Argentina (GRID:grid.423606.5) (ISNI:0000 0001 1945 2152)
8 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Energía No Convencional, CCT Salta-Jujuy, Salta, Argentina (GRID:grid.423606.5) (ISNI:0000 0001 1945 2152)
9 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Laboratorio de Recursos Agroforestales, Centro Austral de Investigaciones Científicas (CADIC), Ushuaia, Argentina (GRID:grid.423606.5) (ISNI:0000 0001 1945 2152)
10 Ministerio de Ambiente y Desarrollo Sostenible de la Nación, Dirección Nacional de Bosques, Buenos Aires, Argentina (GRID:grid.423606.5)
11 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Tucumán, Instituto de Ecología Regional, Tucumán, Argentina (GRID:grid.108162.c) (ISNI:0000000121496664)
12 Centro Científico Tecnológico CONICET, Universidad Nacional de Rosario, Instituto de Investigaciones en Ciencias Agrarias de Rosario, Santa Fe, Argentina (GRID:grid.501375.5)
13 Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina (GRID:grid.419231.c) (ISNI:0000 0001 2167 7174); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Tucumán, Instituto de Ecología Regional, Tucumán, Argentina (GRID:grid.108162.c) (ISNI:0000000121496664)
14 Universidad Nacional de La Plata (UNLP), Laboratorio de Investigaciones en Maderas (LIMAD), La Plata, Argentina (GRID:grid.9499.d) (ISNI:0000 0001 2097 3940)
15 Parque Nacional Los Alerces, Administración de Parques Nacionales (APN), Esquel, Argentina (GRID:grid.501375.5)
16 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Estudios Ambientales Integrados (CEAI), Universidad Nacional de la Patagonia San Juan Bosco (UNPASJB), Esquel, Argentina (GRID:grid.423606.5) (ISNI:0000 0001 1945 2152)