It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Diabetes mellitus is a multifactorial global health disorder that is rising at an alarming rate. One effective therapeutic approach for controlling hyperglycemia associated with type-2 diabetes is to target α-glucosidase, which catalyzes starch hydrolysis in the intestine. In an attempt to find potential α-glucosidase inhibitors, a series of twenty new quinoline linked benzothiazole hybrids (8a–t) were synthesized in good yields from suitable reaction procedures and their chemical structures were analyzed by 1HNMR, 13CNMR, IR, and ESI–MS analysis. The synthesized derivatives further screened for their activity against α-glucosidase. Among them, compounds 8b, 8h, 8n and 8o exhibited remarkable α-glucosidase inhibitory activity with IC50 values ranging from 38.2 ± 0.3 to 79.9 ± 1.2 µM compared with standard drug acarbose (IC50 = 750.0 ± 2.0 µM). Enzyme kinetic studies of the most active compound (8h) indicated a non-competitive inhibition with Ki value of 38.2 µM. Moreover, the homology modeling, molecular docking and molecular dynamics simulation studies were conducted to reveal key interactions between the most active compound 8h and the targeted enzyme. These results are complementary to the experimental observations. In order to predict the druggability of the novel derivatives, the pharmacokinetic properties were also applied. These findings could be useful for the design and development of new α-glucosidase inhibitors.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Tehran University of Medical Sciences, Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran, Iran (GRID:grid.411705.6) (ISNI:0000 0001 0166 0922)
2 Tehran University of Medical Sciences, Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research Center, Tehran, Iran (GRID:grid.411705.6) (ISNI:0000 0001 0166 0922)
3 Mazandaran University of Medical Sciences, Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Sari, Iran (GRID:grid.411623.3) (ISNI:0000 0001 2227 0923)