Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Indoor Positioning Systems (IPSs) have multiple applications. For example, they can be used to guide people, to locate items in a warehouse and to support the navigation of Automated Guided Vehicles (AGV). Currently most AGVs use local pre-defined navigation systems, but they lack a global localisation system. Integrating both systems is uncommon due to the inherent challenge in balancing accuracy with coverage. Visible Light Position (VLP) offers accurate and fast localisation, but it encounters scalability limitations. To overcome this, this paper presents a novel Image Sensor-based VLP (IS-VLP) identification method that harnesses existing Light Emitting Diode (LED) lighting infrastructure to substitute both navigation and localisation systems effectively in the whole area. We developed an IPS that achieves six-axis positioning at 90 Hz refresh rate using OpenCV’s solvePnP algorithm and embedded computing. This IPS has been validated in a laboratory environment and successfully deployed in a real factory to position an operative AGV. The system has resulted in accuracies better than 12 cm for 95% of the measurements. This work advances towards positioning VLP as an appealing choice for IPS in industrial environments, offering an inexpensive, scalable, accurate and robust solution.

Details

Title
A High-Accuracy, Scalable and Affordable Indoor Positioning System Using Visible Light Positioning for Automated Guided Vehicles
Author
Boixader, Aleix 1 ; Labella, Carlos 1 ; Catalan, Marisa 1 ; Paradells, Josep 2 

 IoT Research Group, Fundació i2CAT, 08034 Barcelona, Spain; [email protected] (A.B.); [email protected] (C.L.); or [email protected] (J.P.) 
 IoT Research Group, Fundació i2CAT, 08034 Barcelona, Spain; [email protected] (A.B.); [email protected] (C.L.); or [email protected] (J.P.); Barcelona School of Telecommunications Engineering, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain 
First page
82
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2912642945
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.