Abstract

Distributed quantum metrology has drawn intense interest as it outperforms the optimal classical counterparts in estimating multiple distributed parameters. However, most schemes so far have required entangled resources consisting of photon numbers equal to or more than the parameter numbers, which is a fairly demanding requirement as the number of nodes increases. Here, we present a distributed quantum sensing scenario in which quantum-enhanced sensitivity can be achieved with fewer photons than the number of parameters. As an experimental demonstration, using a two-photon entangled state, we estimate four phases distributed 3 km away from the central node, resulting in a 2.2 dB sensitivity enhancement from the standard quantum limit. Our results show that the Heisenberg scaling can be achieved even when using fewer photons than the number of parameters. We believe our scheme will open a pathway to perform large-scale distributed quantum sensing with currently available entangled sources.

Enhanced sensitivity is a key parameter in quantum metrology. Here the authors demonstrate a distributed quantum phase sensing method that uses fewer photons than the number of parameters needed, and an enhanced quantum sensitivity is achieved.

Details

Title
Distributed quantum sensing of multiple phases with fewer photons
Author
Kim, Dong-Hyun 1 ; Hong, Seongjin 2   VIAFID ORCID Logo  ; Kim, Yong-Su 3   VIAFID ORCID Logo  ; Kim, Yosep 4   VIAFID ORCID Logo  ; Lee, Seung-Woo 5   VIAFID ORCID Logo  ; Pooser, Raphael C. 6 ; Oh, Kyunghwan 7 ; Lee, Su-Yong 8 ; Lee, Changhyoup 9 ; Lim, Hyang-Tag 3   VIAFID ORCID Logo 

 Korea Institute of Science and Technology (KIST), Center for Quantum Information, Seoul, Korea (GRID:grid.496416.8) (ISNI:0000 0004 5934 6655); Yonsei University, Department of Physics, Seoul, Korea (GRID:grid.15444.30) (ISNI:0000 0004 0470 5454) 
 Chung-Ang University, Department of Physics, Seoul, Korea (GRID:grid.254224.7) (ISNI:0000 0001 0789 9563) 
 Korea Institute of Science and Technology (KIST), Center for Quantum Information, Seoul, Korea (GRID:grid.496416.8) (ISNI:0000 0004 5934 6655); KIST School, Korea University of Science and Technology, Division of Nanoscience and Technology, Seoul, Korea (GRID:grid.412786.e) (ISNI:0000 0004 1791 8264) 
 Korea Institute of Science and Technology (KIST), Center for Quantum Information, Seoul, Korea (GRID:grid.496416.8) (ISNI:0000 0004 5934 6655); Korea University, Department of Physics, Seoul, Korea (GRID:grid.222754.4) (ISNI:0000 0001 0840 2678) 
 Korea Institute of Science and Technology (KIST), Center for Quantum Information, Seoul, Korea (GRID:grid.496416.8) (ISNI:0000 0004 5934 6655) 
 Oak Ridge National Laboratory, Oak Ridge, USA (GRID:grid.135519.a) (ISNI:0000 0004 0446 2659) 
 Yonsei University, Department of Physics, Seoul, Korea (GRID:grid.15444.30) (ISNI:0000 0004 0470 5454) 
 Agency for Defense Development, Emerging Science and Technology Directorate, Daejeon, Korea (GRID:grid.453167.2) (ISNI:0000 0004 0621 566X); ADD School, University of Science and Technology, Weapon Systems Engineering, Daejeon, Korea (GRID:grid.412786.e) (ISNI:0000 0004 1791 8264) 
 Korea Research Institute of Standards and Science, Daejeon, Korea (GRID:grid.410883.6) (ISNI:0000 0001 2301 0664) 
Pages
266
Publication year
2024
Publication date
2024
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2913315341
Copyright
© The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.