It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Sound is one of the primary forms of sensory information that we use to perceive our surroundings. Usually, a sound event is a sequence of an audio clip obtained from an action. The action can be rhythm patterns, music genre, people speaking for a few seconds, etc. The sound event classification address distinguishes what kind of audio clip it is from the given audio sequence. Nowadays, it is a common issue to solve in the following pipeline: audio pre-processing→perceptual feature extraction→classification algorithm. In this paper, we improve the traditional sound event classification algorithm to identify unknown sound events by using the deep learning method. The compact cluster structure in the feature space for known classes helps recognize unknown classes by allowing large room to locate unknown samples in the embedded feature space. Based on this concept, we applied center loss and supervised contrastive loss to optimize the model. The center loss tries to minimize the intra- class distance by pulling the embedded feature into the cluster center, while the contrastive loss disperses the inter-class features from one another. In addition, we explored the performance of self-supervised learning in detecting unknown sound events. The experimental results demonstrate that our proposed open-set sound event classification algorithm and self-supervised learning approach achieve sustained performance improvements in various datasets.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 East China Jiaotong University, School of Information Engineering, Nanchang, China (GRID:grid.440711.7) (ISNI:0000 0004 1793 3093); Jeonbuk National University, Artificial Intelligence Lab, Department of Computer Science and Engineering, Jeonju, South Korea (GRID:grid.411545.0) (ISNI:0000 0004 0470 4320)
2 Jeonbuk National University, Artificial Intelligence Lab, Department of Computer Science and Engineering, Jeonju, South Korea (GRID:grid.411545.0) (ISNI:0000 0004 0470 4320)