It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
This paper presents a novel semi-automatic method for lung segmentation in thoracic CT datasets. The fully three-dimensional algorithm is based on a level set representation of an active surface and integrates texture features to improve its robustness. The method’s performance is enhanced by the graphics processing unit (GPU) acceleration. The segmentation process starts with a manual initialisation of 2D contours on a few representative slices of the analysed volume. Next, the starting regions for the active surface are generated according to the probability maps of texture features. The active surface is then evolved to give the final segmentation result. The recent implementation employs features based on grey-level co-occurrence matrices and Gabor filters. The algorithm was evaluated on real medical imaging data from the LCTCS 2017 challenge. The results were also compared with the outcomes of other segmentation methods. The proposed approach provided high segmentation accuracy while offering very competitive performance.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Bialystok University of Technology, Faculty of Computer Science, Białystok, Poland (GRID:grid.446127.2) (ISNI:0000 0000 9787 2307)