It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
This article critically investigates the limitations of the simulated annealing algorithm using probabilistic bits (pSA) in solving large-scale combinatorial optimization problems. The study begins with an in-depth analysis of the pSA process, focusing on the issues resulting from unexpected oscillations among p-bits. These oscillations hinder the energy reduction of the Ising model and thus obstruct the successful execution of pSA in complex tasks. Through detailed simulations, we unravel the root cause of this energy stagnation, identifying the feedback mechanism inherent to the pSA operation as the primary contributor to these disruptive oscillations. To address this challenge, we propose two novel algorithms, time average pSA (TApSA) and stalled pSA (SpSA). These algorithms are designed based on partial deactivation of p-bits and are thoroughly tested using Python simulations on maximum cut benchmarks that are typical combinatorial optimization problems. On the 16 benchmarks from 800 to 5000 nodes, the proposed methods improve the normalized cut value from 0.8 to 98.4% on average in comparison with the conventional pSA.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Tohoku University, Research Institute of Electrical Communication, Sendai, Japan (GRID:grid.69566.3a) (ISNI:0000 0001 2248 6943)