Full Text

Turn on search term navigation

Copyright © 2024 Shuangjie Liu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/

Abstract

Using Nafion212 membrane and TEOS solution as raw materials, Nafion212/SiO2 composite membranes were prepared. In the in situ sol-gel reaction process, a series of Nafion/SiO2 composite membranes were prepared by varying the reaction temperature and reaction time. The effects of different modification schemes on Nafion/SiO2 composite membranes were studied using SEM, EDS, TEM, TGA, XRD, and mechanical tensile experiments, among other methods. The results show that Nafion/SiO2 composite membranes prepared at 3°C exhibit a well-separated phase structure and excellent water retention properties, with a water uptake of 29.23% and a swelling ratio of 24.25%. These membranes also demonstrate outstanding physical and chemical performance, with a maximum tensile stress of 13.6 MPa and an elongation at a break of 270%. At 110°C, the proton conductivity of the Nafion/SiO2 composite membrane reaches 0.172 S/cm, meeting the requirements for high-temperature proton exchange membrane fuel cells.

Details

Title
Impact of SiO2 Modification on the Performance of Nafion Composite Membrane
Author
Liu, Shuangjie 1 ; Yu, Jialin 1   VIAFID ORCID Logo  ; Hao, Yongping 1 ; Gao, Feng 1 ; Zhou, Mo 1 ; Zhao, Lijun 2 

 School of Equipment Engineering, Shenyang Ligong University, Shenyang 110168, China 
 Hua’an Industry Group Co., Ltd, 161046, China 
Editor
Zhi Li
Publication year
2024
Publication date
2024
Publisher
John Wiley & Sons, Inc.
ISSN
16879422
e-ISSN
16879430
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2916948046
Copyright
Copyright © 2024 Shuangjie Liu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/