It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
This is a cross-sectional study examining kinetics and durability of immune response in children with solid organ transplants (SOTs) who had COVID-19 disease between November 2020 through June 2022, who were followed for 60-days at a single transplant center. Blood was collected between 1–14 (acute infection), and 15–60 days of a positive PCR (convalescence). SOT children with peripheral blood mononuclear cells (PBMC) cryopreserved before 2019 were non-infected controls (ctrls). PBMCs stimulated with 15-mer peptides from spike protein and anti-CD49d/anti-CD28. Testing done included mass cytometry, mi-RNA sequencing with confirmatory qPCR. 38 children formed the study cohort, 10 in the acute phase and 8 in the convalescence phase. 20 subjects were non-infected controls. Two subjects had severe disease. Subjects in the acute and convalescent phases were different subjects. The median age and tacrolimus level at blood draw was not significantly different. There was no death, and no subject was lost to follow-up. During acute infection CD57 expression was low in NKT, Th17 effector memory, memory Treg, CD4−CD8−, and γδT cells (p = 0.01, p = 0.04, p = 0.03, p = 0.03, p = 0.004 respectively). The frequencies of NK and Th2 effector memory cells increased (p = 0.01, p = 0.02) during acute infection. Non-switched memory B and CD8 central memory cell frequencies were decreased during acute infection (p = 0.02; p = 0.02), but the decrease in CD8 central memory cells did not persist. CD4−CD8− and CD14 monocyte frequencies increased during recovery (p = 0.03; p = 0.007). Our observations suggest down regulation of CD57 with absence of NK cell contraction protect against death from COVID-19 disease in children with SOTs.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Medstar Georgetown University Hospital, Medstar Georgetown Transplant Institute, Washington, USA (GRID:grid.411663.7) (ISNI:0000 0000 8937 0972)
2 Georgetown University Medical Center, Department of Oncology, Genomics, and Epigenomics Shared Resource, Lombardi Comprehensive Cancer Center, Washington, USA (GRID:grid.411667.3) (ISNI:0000 0001 2186 0438)