Content area

Abstract

There is an ongoing debate about whether working memory (WM) maintenance relies on persistent activity and/or short-term synaptic plasticity. This is a challenging question, because neuroimaging techniques in cognitive neuroscience measure activity only. Recently, neural perturbation techniques have been developed to tackle this issue, such as visual impulse perturbation or "pinging", which reveals (un)attended WM content during maintenance. There are contrasting explanations of how pinging reveals WM content, which is central to the debate. Pinging could reveal mnemonic representations by perturbing content-specific networks or by increasing the neural signal-to-noise ratio of active neural states. Here we tested the extent to which the neural impulse response is patterned by the WM network, by presenting two different impulse stimuli. If the impulse interacts with WM networks, the WM-specific impulse response should be enhanced by physical overlap between the initial memory item and the subsequent external perturbation stimulus. This prediction was tested in a delayed orientation match-to-sample task by matching or mismatching task-irrelevant spatial frequencies between memory items and impulse stimuli, as well as probes. Matching probe spatial frequency with memory items resulted in faster behavioral response times and matching impulse spatial frequency with memory items increased the specificity of the neural impulse response as measured from EEG. Matching spatial frequencies did neither result in globally stronger neural responses nor in a larger decrease in trial-to-trial variability compared to mismatching spatial frequencies. The improved neural and behavioural readout of irrelevant feature matching provide evidence that impulse perturbation interacts directly with the memory representations.

Competing Interest Statement

The authors have declared no competing interest.

Footnotes

* The appendix and discussion are revised.

Details

1009240
Title
Behaviorally irrelevant feature matching increases neural and behavioral working memory readout
Publication title
bioRxiv; Cold Spring Harbor
Publication year
2025
Publication date
Jan 17, 2025
Section
New Results
Publisher
Cold Spring Harbor Laboratory Press
Source
BioRxiv
Place of publication
Cold Spring Harbor
Country of publication
United States
University/institution
Cold Spring Harbor Laboratory Press
Publication subject
ISSN
2692-8205
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Milestone dates
2023-09-13 (Version 1); 2024-01-23 (Version 2); 2024-09-18 (Version 3)
ProQuest document ID
2917671423
Document URL
https://www.proquest.com/working-papers/behaviorally-irrelevant-feature-matching/docview/2917671423/se-2?accountid=208611
Copyright
© 2025. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-01-18
Database
ProQuest One Academic