Full Text

Turn on search term navigation

© 2024 Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. http://creativecommons.org/licenses/by-nc/4.0/ This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See:  http://creativecommons.org/licenses/by-nc/4.0/ . Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Introduction

Machine learning is a rapidly expanding field and is already incorporated into many aspects of medicine including diagnostics, prognostication and clinical decision-support tools. Epilepsy is a common and disabling neurological disorder, however, management remains challenging in many cases, despite expanding therapeutic options. We present a systematic review protocol to explore the role of machine learning in the management of epilepsy.

Methods and analysis

This protocol has been drafted with reference to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) for Protocols. A literature search will be conducted in databases including MEDLINE, Embase, Scopus and Web of Science. A PRISMA flow chart will be constructed to summarise the study workflow. As the scope of this review is the clinical application of machine learning, the selection of papers will be focused on studies directly related to clinical decision-making in management of epilepsy, specifically the prediction of response to antiseizure medications, development of drug-resistant epilepsy, and epilepsy surgery and neuromodulation outcomes. Data will be extracted following the CHecklist for critical Appraisal and data extraction for systematic Reviews of prediction Modelling Studies checklist. Prediction model Risk Of Bias ASsessment Tool will be used for the quality assessment of the included studies. Syntheses of quantitative data will be presented in narrative format.

Ethics and dissemination

As this study is a systematic review which does not involve patients or animals, ethics approval is not required. The results of the systematic review will be submitted to peer-review journals for publication and presented in academic conferences.

PROSPERO registration number

CRD42023442156.

Details

Title
Role of machine learning in the management of epilepsy: a systematic review protocol
Author
Richard Shek-kwan Chang 1   VIAFID ORCID Logo  ; Nguyen, Shani 2 ; Chen, Zhibin 1 ; Foster, Emma 1   VIAFID ORCID Logo  ; Kwan, Patrick 1 

 Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia 
 Monash University Faculty of Medicine Nursing and Health Sciences, Melbourne, Victoria, Australia 
First page
e079785
Section
Neurology
Publication year
2024
Publication date
2024
Publisher
BMJ Publishing Group LTD
e-ISSN
20446055
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2918317802
Copyright
© 2024 Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. http://creativecommons.org/licenses/by-nc/4.0/ This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See:  http://creativecommons.org/licenses/by-nc/4.0/ . Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.