Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Simple Summary

Colon cancer is a solid tumor that is a prominent contributor to global mortality. Immune cells genetically engineered with a chimeric antigen receptor (CAR) that can recognize cancer-specific targets is a new innovative therapy approach that has had success in treating blood cancers but is still in development for treating solid tumors such as colon cancer. Part of the reason for the added difficulty in targeting solid tumors is the tumor microenvironment that acts as a protective barrier around a solid tumor. In this research paper, we have developed a new cellular approach for the targeted treatment of colon cancer that is designed to overcome the tumor microenvironment. We tested this new CAR cell therapy against multiple solid colon cancer models, and confirmed its efficacy and functionality in finding and eliminating solid tumors.

Abstract

Colorectal carcinoma (CRC) presents a formidable medical challenge, demanding innovative therapeutic strategies. Chimeric antigen receptor (CAR) natural killer (NK) cell therapy has emerged as a promising alternative to CAR T-cell therapy for cancer. A suitable tumor antigen target on CRC is carcinoembryonic antigen (CEA), given its widespread expression and role in tumorigenesis and metastasis. CEA is known to be prolifically shed from tumor cells in a soluble form, thus hindering CAR recognition of tumors and migration through the TME. We have developed a next-generation CAR construct exclusively targeting cell-associated CEA, incorporating a PD1-checkpoint inhibitor and a CCR4 chemokine receptor to enhance homing and infiltration of the CAR-NK-92 cell line through the TME, and which does not induce fratricidal killing of CAR-NK-92-cells. To evaluate this therapeutic approach, we harnessed intricate 3D multicellular tumor spheroid models (MCTS), which emulate key elements of the TME. Our results demonstrate the effective cytotoxicity of CEA-CAR-NK-92 cells against CRC in colorectal cell lines and MCTS models. Importantly, minimal off-target activity against non-cancerous cell lines underscores the precision of this therapy. Furthermore, the integration of the CCR4 migration receptor augments homing by recognizing target ligands, CCL17 and CCL22. Notably, our CAR design results in no significant trogocytosis-induced fratricide. In summary, the proposed CEA-targeting CAR-NK cell therapy could offer a promising solution for CRC treatment, combining precision and efficacy in a tailored approach.

Details

Title
Next-Generation CEA-CAR-NK-92 Cells against Solid Tumors: Overcoming Tumor Microenvironment Challenges in Colorectal Cancer
Author
Franzén, Alexander Sebastian 1   VIAFID ORCID Logo  ; Abdelhadi Boulifa 1 ; Radecke, Clarissa 2 ; Stintzing, Sebastian 2   VIAFID ORCID Logo  ; Raftery, Martin J 1 ; Pecher, Gabriele 1 

 Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; Competence Center of Immuno-Oncology and Translational Cell Therapy (KITZ), Department of Hematology, Oncology and Tumor Immunology, CCM, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany 
 Competence Center of Immuno-Oncology and Translational Cell Therapy (KITZ), Department of Hematology, Oncology and Tumor Immunology, CCM, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany 
First page
388
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20726694
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2918545058
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.