Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

An epileptic seizure is a brief episode of symptoms and signs caused by excessive electrical activity in the brain. One of the major chronic neurological diseases, epilepsy, affects millions of individuals worldwide. Effective detection of seizure events is critical in the diagnosis and treatment of patients with epilepsy. Neurologists monitor the electrical activity in the brains of patients to identify epileptic seizures by employing advanced sensing techniques, including electroencephalograms and electromyography. Machine learning-based classification of the EEG signal can help differentiate between normal signals and the patterns associated with epileptic seizures. This work presents a novel approach for the classification of epileptic seizures using random neural network (RNN). The proposed model has been trained and tested using two publicly available datasets: CHB-MIT and BONN, provided by Children’s Hospital Boston-Massachusetts Institute of Technology and the University of Bonn, respectively. The results obtained from multiple experiments highlight that the proposed scheme outperformed traditional classification schemes such as artificial neural network and support vector machine. The proposed RNN-based model achieved accuracies of 93.27% and 99.84% on the CHB-MIT and BONN datasets, respectively.

Details

Title
Epileptic Seizure Classification Based on Random Neural Networks Using Discrete Wavelet Transform for Electroencephalogram Signal Decomposition
Author
Syed Yaseen Shah 1 ; Larijani, Hadi 2   VIAFID ORCID Logo  ; Gibson, Ryan M 1   VIAFID ORCID Logo  ; Liarokapis, Dimitrios 1   VIAFID ORCID Logo 

 School of Computing, Engineering and Built Environment, Glasgow Caledonian University, Glasgow G4 0BA, UK; [email protected] (R.M.G.); [email protected] (D.L.) 
 SMART Technology Research Centre, Glasgow Caledonian University, Cowcaddens Road, Glasgow G4 0BA, UK 
First page
599
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2918573768
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.