Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Simple Summary

Honey bees are very important for nature and food production. However, beekeepers’ work is continuously challenged by pests, pathogens, pesticides, and other impacts of the environment on their honey bee colonies, and, therefore, they would greatly benefit from up-to-date insights on the health condition of their bees. To disturb those bee colonies as little as possible, it is preferable that this information be collected in an automated way. In this article, we present the B-GOOD project as a case study to monitor the health of honey bee colonies in an automated, standardized way. The use of a similar approach by researchers in their future studies would allow the combination of different datasets on bee health. More data combinations would facilitate the use of machine learning to better and more accurately determine the thresholds for beekeeper interventions, the underlying mechanisms of honey bee colony health, and the prediction of health and colony losses, among other indicators.

Abstract

Honey bee colonies have great societal and economic importance. The main challenge that beekeepers face is keeping bee colonies healthy under ever-changing environmental conditions. In the past two decades, beekeepers that manage colonies of Western honey bees (Apis mellifera) have become increasingly concerned by the presence of parasites and pathogens affecting the bees, the reduction in pollen and nectar availability, and the colonies’ exposure to pesticides, among others. Hence, beekeepers need to know the health condition of their colonies and how to keep them alive and thriving, which creates a need for a new holistic data collection method to harmonize the flow of information from various sources that can be linked at the colony level for different health determinants, such as bee colony, environmental, socioeconomic, and genetic statuses. For this purpose, we have developed and implemented the B-GOOD (Giving Beekeeping Guidance by computational-assisted Decision Making) project as a case study to categorize the colony’s health condition and find a Health Status Index (HSI). Using a 3-tier setup guided by work plans and standardized protocols, we have collected data from inside the colonies (amount of brood, disease load, honey harvest, etc.) and from their environment (floral resource availability). Most of the project’s data was automatically collected by the BEEP Base Sensor System. This continuous stream of data served as the basis to determine and validate an algorithm to calculate the HSI using machine learning. In this article, we share our insights on this holistic methodology and also highlight the importance of using a standardized data language to increase the compatibility between different current and future studies. We argue that the combined management of big data will be an essential building block in the development of targeted guidance for beekeepers and for the future of sustainable beekeeping.

Details

Title
Bridging the Gap between Field Experiments and Machine Learning: The EC H2020 B-GOOD Project as a Case Study towards Automated Predictive Health Monitoring of Honey Bee Colonies
Author
Coby van Dooremalen 1   VIAFID ORCID Logo  ; Ulgezen, Zeynep N 1 ; Raffaele Dall’Olio 2   VIAFID ORCID Logo  ; Godeau, Ugoline 3 ; Duan, Xiaodong 4   VIAFID ORCID Logo  ; Sousa, José Paulo 5   VIAFID ORCID Logo  ; Schäfer, Marc O 6 ; Beaurepaire, Alexis 7   VIAFID ORCID Logo  ; Pim van Gennip 8 ; Schoonman, Marten 8 ; Flener, Claude 9   VIAFID ORCID Logo  ; Matthijs, Severine 10   VIAFID ORCID Logo  ; David Claeys Boúúaert 11   VIAFID ORCID Logo  ; Verbeke, Wim 11   VIAFID ORCID Logo  ; Freshley, Dana 11 ; Dirk-Jan Valkenburg 1 ; van den Bosch, Trudy 1 ; Schaafsma, Famke 1 ; Peters, Jeroen 1   VIAFID ORCID Logo  ; Xu, Mang 1   VIAFID ORCID Logo  ; Yves Le Conte 3   VIAFID ORCID Logo  ; Alaux, Cedric 3 ; Dalmon, Anne 3   VIAFID ORCID Logo  ; Paxton, Robert J 12   VIAFID ORCID Logo  ; Tehel, Anja 12   VIAFID ORCID Logo  ; Streicher, Tabea 12 ; Dezmirean, Daniel S 13   VIAFID ORCID Logo  ; Giurgiu, Alexandru I 13   VIAFID ORCID Logo  ; Topping, Christopher J 4   VIAFID ORCID Logo  ; James Henty Williams 4   VIAFID ORCID Logo  ; Capela, Nuno 5   VIAFID ORCID Logo  ; Lopes, Sara 5 ; Alves, Fátima 5 ; Alves, Joana 5   VIAFID ORCID Logo  ; Bica, João 5 ; Simões, Sandra 5   VIAFID ORCID Logo  ; António Alves da Silva 5   VIAFID ORCID Logo  ; Castro, Sílvia 5 ; Loureiro, João 5 ; Horčičková, Eva 5   VIAFID ORCID Logo  ; Bencsik, Martin 14 ; McVeigh, Adam 14   VIAFID ORCID Logo  ; Kumar, Tarun 14 ; Moro, Arrigo 7   VIAFID ORCID Logo  ; April van Delden 8 ; Ziółkowska, Elżbieta 15 ; Filipiak, Michał 15   VIAFID ORCID Logo  ; Mikołajczyk, Łukasz 15 ; Leufgen, Kirsten 16 ; De Smet, Lina 11   VIAFID ORCID Logo  ; de Graaf, Dirk C 11   VIAFID ORCID Logo 

 Wageningen University & Research, 6708 PB Wageningen, The Netherlands 
 BeeSources di Raffaele Dall’Olio, 40132 Bologna, Italy 
 Institut National de la Recherche pour l’Agriculture, l’Alimentation et l’Environnement, 84914 Avignon, France 
 Aarhus Universitet, 8000 Aarhus, Denmark 
 Centre for Functional Ecology, Department of Life Sciences, TERRA Associated Laboratory, University of Coimbra, 3000-456 Coimbra, Portugal 
 Friedrich-Loeffler-Institut, Bundesforschunginstitut für Tiergesundheit, 17493 Greifswald-Insel Riems, Germany 
 Institute of Bee Health, University of Bern, 3012 Bern, Switzerland 
 Stichting BEEP, 3972 LK Driebergen-Rijsenburg, The Netherlands 
 Suomen Mehiläishoitajain Liitto, 00130 Helsinki, Finland 
10  Sciensano, 1180 Brussels, Belgium 
11  Ghent University, 9000 Ghent, Belgium 
12  Martin-Luther-Universitaet Halle-Wittenberg, 06120 Halle, Germany 
13  Universitatea de Stiinte Agricole si Medicina Veterinara Cluj Napoca, 400372 Cluj Napoca, Romania 
14  The Nottingham Trent University, Nottingham NG11 8NS, UK 
15  Uniwersytet Jagiellonski, 30-387 Krakow, Poland 
16  SCIPROM sàrl, 1025 Saint-Sulpice, Switzerland 
First page
76
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20754450
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2918768218
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.