Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Zygosaccharomyces rouxii used in soy sauce brewing is an osmotolerant and halotolerant yeast, but it is not tolerant to high temperatures and the underlying mechanisms remain poorly understood. Using a synthetic medium containing only Pro as a nitrogen source, the response of Z. rouxii in protein level to high-temperature stress (40 °C, HTS) during the lag phase was investigated. Within the first two h, the total intracellular protein concentration was significantly decreased from 220.99 ± 6.58 μg/mg DCW to 152.63 ± 10.49 μg/mg DCW. The analysis of the amino acid composition of the total protein through vacuum proteolysis technology and HPLC showed that new amino acids (Thr, Tyr, Ser, and His) were added to newborn protein over time during the lag phase under HTS. The nutritional conditions used in this study determined that the main source of amino acid supply for protein synthesis was through amino acid biosynthesis and ubiquitination-mediated protein degradation. Differential expression analysis of the amino acid biosynthesis-related genes in the transcriptome showed that most genes were upregulated under HTS, excluding ARO8, which was consistently repressed during the lag phase. RT-qPCR results showed that high-temperature stress significantly increased the upregulation of proteolysis genes, especially PSH1 (E3 ubiquitin ligase) by 13.23 ± 1.44 fold (p < 0.0001) within 4 h. Overall, these results indicated that Z. rouxii adapt to prolonged high temperatures stress by altering its basal protein composition. This protein renewal was related to the regulation of proteolysis and the biosynthesis of amino acids.

Details

Title
The Protein Response of Salt-Tolerant Zygosaccharomyces rouxii to High-Temperature Stress during the Lag Phase
Author
Hu, Na; Xiong, Xiao; Yao, Lan; Chen, Xiong; Li, Xin
First page
48
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
2309608X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2918776468
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.