Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Cargo ships with wide hatches usually have thin walls and limited torsional rigidity. Consequently, conducting a comprehensive torsional analysis is important because these loads can exert a significant impact. In this paper, the structural response of a multipurpose cargo ship to combined bending and torsional loads is studied using finite element analysis. The bending and torsional moments are calculated following the rules and standard regulations followed by the classification society. The ship’s 3D finite element model was verified using beam theory and direct calculations. In contrast, the accuracy of torsional stress was confirmed by comparing thin wall girder theory with direct calculation results. This study thoroughly examined the impacts of the still water bending moment, the vertical wave bending moment, and the wave-induced torsional moment on the structural response of ships. Furthermore, it scrutinised the impact of torsion on both open-deck and closed-deck ships. Hull girder normal stresses at midship due to still water and the vertical wave bending moment are shown to contribute to almost 70% of total stress in an inclined condition; stresses resulting from the horizontal wave bending moment contribute nearly 10%, while warping stresses contribute approximately 20% in open-deck ships. It is also shown that torsion has little impact on closed-deck ships. Finally, a buckling analysis was conducted to assess the ship’s buckling criteria, confirming that the linear buckling criteria were satisfied.

Details

Title
Linear Longitudinal Strength Analysis of a Multipurpose Cargo Ship under Combined Bending and Torsional Load
Author
Abedin, Joynal 1 ; Franklin, Francis 1 ; Ikhtiar Mahmud, S M 2 

 School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; [email protected] (J.A.); [email protected] (F.F.) 
 Department of Naval Architecture and Marine Engineering, Military Institute of Science and Technology, Dhaka 1216, Bangladesh 
First page
59
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20771312
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2918777071
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.