Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The thermodynamic properties of the CaO-Al2O3-VOx slag system are of great significance to the direct alloying of vanadium in the smelting process of vanadium steel. In this paper, the phase equilibrium relationship of the CaO-Al2O3-VOx system under argon atmosphere at 1500 °C was studied with a high-temperature phase equilibrium experiment. Combined with SEM-EDS, XRD, and XPS, the types and compositions of each phase of the equilibrium slag samples and the content of different valence states of the vanadium element were determined. The result shows that under argon atmosphere (p(O2) = 10−3 atm) at 1500 °C, the CaO-Al2O3-VOx slag system contains four three-phase regions, seven two-phase regions, and a single-phase region (glass phase). The phase equilibrium results were plotted in a CaO-Al2O3-V2O5-VO2 spatial phase diagram, and the phase equilibrium results were projected on the CaO-Al2O3-V2O5 and CaO-Al2O3-VO2 pseudo-ternary phase diagrams, respectively. In the end, the rationality of projecting the phase equilibrium results to the pseudo-ternary phase diagram was quantitatively evaluated.

Details

Title
The Phase Diagram of a CaO-Al2O3-VOx Slag System under Argon Atmosphere at 1500 °C
Author
Liu, Chengjun 1 ; Xie, Xiaoxiang 1 ; Qiu, Jiyu 1 ; Li, Wenjie 1 ; Huo, Guojie 1 

 School of Metallurgy, Northeastern University, Shenyang 110819, China; [email protected] (C.L.); [email protected] (W.L.); [email protected] (G.H.); Key Laboratory for Ecological Metallurgy of Multimetallic Ores (Ministry of Education), Northeastern University, Shenyang 110819, China 
First page
108
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20754701
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2918778651
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.