Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Dielectric materials with superb thermal and electrical properties are highly desired for high-voltage electrical equipment and advanced electronics. Here, we propose a novel strategy to improve the performance of epoxy composites by employing boron nitride nanosheets (BNNSs) and γ-glycidyl ether oxypropyl sesimoxane (G-POSS) as functional fillers. The resultant ternary epoxy composites exhibit high electrical resistivity (1.63 × 1013 Ω·cm) and low dielectric loss (<0.01) due to the ultra-low dielectric constants of cage-structure of G-POSS. In addition, a high thermal conductivity of 0.3969 W·m−1·K−1 is achieved for the epoxy composites, which is 114.66% higher than that of pure epoxy resin. This can be attributed to the high aspect ratio and excellent thermally conductive characteristics of BNNSs, promoting phonon propagation in the composites. Moreover, the epoxy composite simultaneously possesses remarkable dynamic mechanical properties and thermal stability. It is believed that this work provides a universal strategy for designing and fabricating multifunctional composites using a combination of different functional fillers.

Details

Title
Significantly Improve the Thermal Conductivity and Dielectric Performance of Epoxy Composite by Introducing Boron Nitride and POSS
Author
Long, Hongnian 1 ; Liao, Wenlong 2 ; Liu, Rui 2 ; Zeng, Ruichi 1 ; Li, Qihan 3 ; Zhao, Lihua 1 

 College of Electrical Engineering, Sichuan University, Chengdu 610065, China 
 Electric Power Research Institute, State Grid Corporation of Sichuan Province, Chengdu 610072, China 
 College of Aviation Engineering, Civil Aviation Flight University of China, Guanghan 618307, China 
First page
205
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20794991
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2918781907
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.