Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Water resources are severely scarce in desert steppes, and precipitation rarely collects in rivers or is transformed into groundwater. Evapotranspiration (ET) is the primary “export” of precipitation conversion and is the main mechanism for water vapor exchange between the underlying surface and atmosphere. ET changes have certain scale effects. This study focused on the natural grasslands in the Xilamuren Desert Steppe and analyzed and estimated the ET patterns at different scales, including micro-, point-, and surface scales, using observational data from instruments such as a photosynthetic meter, Eddy-covariance system (EC), and large-aperture scintillometer (LAS) from the Ecological Hydrology National Field Science Observation Station in the northern foothills of the Yin Mountains, Inner Mongolia. The spatial scale was extended based on this analysis. The results showed that at the microscale, the diurnal variation in the photosynthetic and transpiration rates of Leymus chinensis followed a bimodal curve. In July and August (high-temperature months), photosynthetic and transpiration rates were almost synchronous. In May and October, when the temperature was moderate, the transpiration rate was delayed compared to the photosynthetic rate at the first peak, and the second peak was significantly smaller than the first peak. At the point-scale, the daily average ET during the growing season was 1.37 mm·d−1 and the total cumulative ET was 251 mm. Transpiration levels exhibited significant seasonal variation in the following order: July > August > June > September > May > October. At the surface-scale, the daily average ET during the growing season was 1.60 mm·d−1 and the total cumulative ET was 294 mm, which was 17% higher than that of the point-scale. The surface-scale ET was estimated using the observed values of the EC and the scale relationship formula and was optimized using different spatial scales of crop coefficients. This well reflected the ET patterns at the surface-scale. Therefore, this study proposes a spatial scale expansion method for a homogeneous underlying surface, verifies its value, and provides methodological support for estimating ET in cases of data scarcity.

Details

Title
Variation and Transformation of Evapotranspiration at Different Scales in a Desert Steppe
Author
Tang, Pengcheng 1 ; Guo, Jianying 1 ; Gao, Xiaoyu 2 ; Zheng, Ying 1 ; Wang, Bo 1 ; Hao, Lei 1 ; Wang, Jiashuang 2 

 Yinshanbeilu Grassland Eco-Hydrology National Observation and Research Station, China Institute of Water Resources and Hydropower Research, Beijing 100038, China; [email protected] (P.T.); [email protected] (J.G.); [email protected] (Y.Z.); [email protected] (B.W.); [email protected] (L.H.) 
 Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China; [email protected] 
First page
288
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20734441
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2918796477
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.