Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Achieving the accurate and efficient monitoring of forests at the tree level can provide detailed information for precise and scientific forest management. However, the detection of individual trees under planted forests characterized by dense distribution, serious overlap, and complicated background information is still a challenge. A new deep learning network, YOLO-DCAM, has been developed to effectively promote individual tree detection amidst complex scenes. The YOLO-DCAM is constructed by leveraging the YOLOv5 network as the basis and further enhancing the network’s capability of extracting features by reasonably incorporating deformable convolutional layers into the backbone. Additionally, an efficient multi-scale attention module is integrated into the neck to enable the network to prioritize the tree crown features and reduce the interference of background information. The combination of these two modules can greatly enhance detection performance. The YOLO-DCAM achieved an impressive performance for the detection of Chinese fir instances within a comprehensive dataset comprising 978 images across four typical planted forest scenes, with model evaluation metrics of precision (96.1%), recall (93.0%), F1-score (94.5%), and [email protected] (97.3%), respectively. The comparative test showed that YOLO-DCAM has a good balance between model accuracy and efficiency compared with YOLOv5 and advanced detection models. Specifically, the precision increased by 2.6%, recall increased by 1.6%, F1-score increased by 2.1%, and [email protected] increased by 1.4% compared to YOLOv5. Across three supplementary plots, YOLO-DCAM consistently demonstrates strong robustness. These results illustrate the effectiveness of YOLO-DCAM for detecting individual trees in complex plantation environments. This study can serve as a reference for utilizing UAV-based RGB imagery to precisely detect individual trees, offering valuable implications for forest practical applications.

Details

Title
Tree-Level Chinese Fir Detection Using UAV RGB Imagery and YOLO-DCAM
Author
Wang, Jiansen 1 ; Zhang, Huaiqing 1   VIAFID ORCID Logo  ; Liu, Yang 1   VIAFID ORCID Logo  ; Zhang, Huacong 2   VIAFID ORCID Logo  ; Zheng, Dongping 3 

 Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Beijing 100091, China; Key Laboratory of Forestry Remote Sensing and Information System, National Forestry and Grassland Administration, Beijing 100091, China 
 Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Beijing 100091, China; Key Laboratory of Forestry Remote Sensing and Information System, National Forestry and Grassland Administration, Beijing 100091, China; Experimental Center of Subtropical Forestry, Chinese Academy of Forestry, Xinyu 336600, China 
 Department of Second Language Studies, University of Hawai‘i at Mānoa, 1890 East-West Road, Honolulu, HI 96822, USA 
First page
335
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2918797042
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.