Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Health emergencies caused by epidemic-prone pathogens (EPPs) have increased exponentially in recent decades. Although vaccines have proven beneficial, they are unavailable for many pathogens. Furthermore, achieving timely and equitable access to vaccines against EPPs is not trivial. It requires decision-makers to capture numerous interrelated factors across temporal and spatial scales, with significant uncertainties, variability, delays, and feedback loops that give rise to dynamic and unexpected behavior. Therefore, despite progress in filling R&D gaps, the path to licensure and the long-term viability of vaccines against EPPs continues to be unclear. This paper presents a quantitative system dynamics modeling framework to evaluate the long-term sustainability of vaccine supply under different vaccination strategies. Data from both literature and 50 expert interviews are used to model the supply and demand of a prototypical Ebolavirus Zaire (EBOV) vaccine. Specifically, the case study evaluates dynamics associated with proactive vaccination ahead of an outbreak of similar magnitude as the 2018–2020 epidemic in North Kivu, Democratic Republic of the Congo. The scenarios presented demonstrate how uncertainties (e.g., duration of vaccine-induced protection) and design criteria (e.g., priority geographies and groups, target coverage, frequency of boosters) lead to important tradeoffs across policy aims, public health outcomes, and feasibility (e.g., technical, operational, financial). With sufficient context and data, the framework provides a foundation to apply the model to a broad range of additional geographies and priority pathogens. Furthermore, the ability to identify leverage points for long-term preparedness offers directions for further research.

Details

Title
Modeling Supply and Demand Dynamics of Vaccines against Epidemic-Prone Pathogens: Case Study of Ebola Virus Disease
Author
Donovan Guttieres  VIAFID ORCID Logo  ; Charlot Diepvens; Decouttere, Catherine  VIAFID ORCID Logo  ; Vandaele, Nico  VIAFID ORCID Logo 
First page
24
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
2076393X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2918798958
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.